Evolving swarm intelligence for task allocation in a real time strategy game
The problem

• **Coordination** in complex scenarios
 – Multiple agents
 – Partial observability
 – Dynamic environment

• **Coordination** → task allocation
 – Divide goal into tasks
 – Assign tasks to agents

Rescue in disasters

RTS game (StarCraft)
Our approach - Goals

• Automatically adjust task allocation parameters
Our approach - Goals

- Automatically adjust task allocation parameters
- Employ task allocation in an RTS game (StarCraft)
Related work – Task allocation

• Many algorithms for task allocation
 – LA-DCOP [1]
 – Branch-and-Bound Fast-Max-Sum [2]
 – many others!

• But parameters are configured by hand

Task allocation

• An optimization problem...
• Given:
 – A set of tasks
 – A set of agents
 • (and their capabilities)

Build
Attack
Explore
Soldier
Worker
Scout
Attack
High capability
Low capability
An optimization problem...

Given:
- A set of tasks
- A set of agents (and their capabilities)

Find:
- The best task-agent assignment
- Utility given by agent-task compatibility

NP-Complete!
Task allocation

• An optimization problem...

• Given:
 – A set of tasks
 – A set of agents
 • (and their capabilities)

• Find:
 – The best task-agent assignment
 – Utility given by agent-task compatibility

• NP-Complete!

(a good assignment)
Task allocation

• Complex scenarios
 – Environment changes
 – Must reassign tasks
 – We need scalability and robustness

(now what?)

Gather resources
Build
Defend base!
Attack
Swarm-GAP\[1\]

- Tasks have associated stimuli (s)
- Agents have response thresholds to tasks (θ)
- Probability to engage in task depends on both:

\[
P(s, \theta) = \frac{s^2}{s^2 + \theta^2}
\]

Swarm-GAP[1]

- Tasks have associated stimuli (s)
- Agents have response thresholds to tasks (θ)
- Probability to engage in task depends on both:
 - s
 - θ

Strengths of Swarm-GAP
- Tasks allocated independently
- Emergent coordination
- *Robustness and scalability*

StarCraft – our testbed

- Popular RTS game with 3 races:
 - Terran
 - Zerg
 - Protoss

- In-game score based on:
 - Resource management
 - Base expansion
 - Attack and defense

- Our bot implements Swarm-GAP
 - Plays with Terran
 - Uses 7 out of 17 buildings
 - Uses 3 out of 13 units
Evolving Swarm-GAP

- The genetic algorithm
 - An individual is an array of Swarm-GAP parameters
• Array of parameters:
 – Stimuli for each task

- S_t
- S_u
- S_v
Evolving Swarm-GAP

- Array of parameters:
 - Stimuli for each task
 - Capability for each agent-task combination

- Array of parameters:
 - Stimulation for each task
 - Capability for each agent-task combination

\[
\begin{array}{cccccc}
 s_t & s_u & s_v & k_{at} & k_{au} & k_{av} & k_{bt} & k_{bu} & k_{bv} \\
\end{array}
\]
Evolving Swarm-GAP

- Array of parameters:
 - Stimuli for each task
 - Capability for each agent-task combination
 - One game-related parameter
- Army size

\[
\begin{align*}
&st & su & sv & k_{at} & k_{au} & k_{av} & k_{bt} & k_{bu} & k_{bv} & g \\
\end{align*}
\]
Evolving Swarm-GAP

- Fitness = \(\frac{\text{our bot's score}}{\text{opponent's score}} \)

If fitness > 1: our bot won the match
Evolving Swarm-GAP

- **Fitness** = \(\frac{\text{our bot's score}}{\text{opponent's score}} \)

- **Problem:**
 - Evaluation depends on match results
 - Time-consuming!

- **Solution**
 - *Estimate* fitness of some individuals
 - “Interpolate” parents’ fitness

If fitness > 1: our bot won the match

Parameters

GASW bot

StarCraft application
Experiments

1. Evaluate GA behavior
 – Fitness along generations
 – Evaluation vs. estimation

2. Compare different approaches
 – Victory rate against StarCraft’s native AI
 – Validation of our approach
Experiment 1 – GA behavior

Mean fitness per generation
Experiment 1 – GA behavior

Results with fitness evaluation.

Mean fitness per generation
Experiment 1 – GA behavior

Results with fitness estimation.

Mean fitness per generation
Experiment 1 – GA behavior

- Superior fitness with estimation
- Is this reliable? Wait for part 2!

Mean fitness per generation
Experiment 2 - with other bots

1. GASW:
 - Best parameters found without fitness estimation

2. GASW-e:
 - Best parameters found with fitness estimation

3. ManSW:
 - Hand-configured array of parameters.

4. Random bot:
 - For each agent, a task is chosen with uniform probability.

5. AIUR:
 - Competition bot, placed 3rd in AIIDE 2013[1] and CIG 2013[2].

ManSW, GASW and GASW-e:

- Tasks allocated via Swarm-GAP
- Difference: parameter configuration
 - This will validate our approach

Experiments 2 - with other bots

Victory rate on 150 matches against StarCraft’s Native AI

Victory rate %

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>GASW</th>
<th>GASW-e</th>
<th>ManSW</th>
<th>AIUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zerg</td>
<td>36</td>
<td>93</td>
<td>98</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>Terran</td>
<td>30</td>
<td>58</td>
<td>75</td>
<td>74</td>
<td>62</td>
</tr>
<tr>
<td>Protoss</td>
<td>3</td>
<td>54</td>
<td>56</td>
<td>59</td>
<td>29</td>
</tr>
</tbody>
</table>
Experiment 2 - with other bots

• Random has the worst performance

Victory rate on 150 matches against StarCraft’s Native AI
Experiment 2 - with other bots

- Random has the worst performance.
- GASW outperforms GASW-e and ManSW.

Victory rate on 150 matches against StarCraft’s Native AI.
Experiment 2 - with other bots

- Random has the worst performance.
- GASW outperforms GASW-e and ManSW.
- GASW and AIUR achieve similar performance.

Victory rate on 150 matches against StarCraft’s Native AI
Bottomline

- In our scenario, fitness estimation wasn’t reliable

Fitness value per generation

Victory rate on 150 matches against StarCraft’s Native AI
Bottomline

• Fitness estimation was misleading:
 – Fitness is noisy: opponent behavior and probabilistic task allocation.

• “Lucky” individual propagates itself with estimation
 – It brings the search to its neighborhood.
 – Which may not be the optimum region.
Conclusion

• Contributions:
 – Systematic approach to adjust parameters for task allocation in complex scenarios.
 – Evaluation of fitness estimation in a noisy environment.

• Promising results:
 – Random and manual were outperformed.
 – Victory rate at par with AIUR.

• However:
 – We couldn’t play direct matches vs AIUR :-(
Future work

• Improve fitness estimation:
 – Deal with fitness noise
 – Which conditions lead to reliable fitness estimation?

• Improve game performance:
 – Use all units and buildings
 – Opening book, micromanagement, terrain analysis...
The end

Evolving swarm intelligence for task allocation in a real-time strategy game

Questions?

@dcc.ufmg.br

anderson
hector.azpurua
chaimo

@dcc.ufmg.br

LUIZ CHAIMOWICZ
Appendix – E-GAP model

“The math behind task allocation”

- I: agents; J: tasks; a_{ij}: allocation indicator

\[
W = \sum_{t} \sum_{i^t \in I^t} \sum_{j^t \in J^t} k_{ij} \times a_{ij}^t - \sum_{t} \sum_{j^t \in J^t} (1 - a_{ij}^t) \times d_j^t \quad (1a)
\]

subject to:

\[
\forall t \forall i^t \in I^t, \sum_{j^t \in J^t} c_{ij}^t \times a_{ij}^t \leq r_i^t \quad (1b)
\]

and:

\[
\forall t \forall j^t \in J^t, \sum_{i^t \in I^t} a_{ij}^t \leq 1 \quad (1c)
\]
Appendix - Swarm-GAP algorithm

- Initiate token (set of tasks)
- For each task j in token:
 - If random() < P(s_j, θ_j):
 - engage in task j
- Forward token with remaining tasks
Appendix - Swarm-GAP in StarCraft

- Agent-task compatibility:

<table>
<thead>
<tr>
<th>Task</th>
<th>SCV</th>
<th>Marine</th>
<th>Commander</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gather minerals</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build barracks</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build supply depot</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build academy</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build refinery</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build command center</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair building</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explore map</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Attack</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Train SCV</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Train medic</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Train marine</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Appendix - Evolving Swarm-GAP

- Fitness estimation*
 - Parents generate offspring as usual

* Method by [Salami and Hendtlass 2003]
Appendix - Evolving Swarm-GAP

• Fitness estimation
 – Individuals have fitness value \(f \) and reliability \(w \)
 – When parents generate offspring:
 • Calculate parent-child similarity \(\rho \)
 • Estimate child fitness
 • Calculate child reliability

Reliability: ‘how close’ estimated \(f \) is to actual fitness
Appendix - Evolving Swarm-GAP

- Fitness estimation
 - Individuals have fitness value \(f \) and reliability \(w \)
 - When parents generate offspring:
 - Calculate parent-child similarity \(\rho \)
 - Estimate child fitness
 - Calculate child reliability

\(\rho_{ac} \) is a measure of “distance” of values in x and y
Fitness estimation

- Individuals have fitness value (f) and reliability (w)
- When parents generate offspring:
 - Calculate parent-child similarity (\(\rho\))
 - Estimate child fitness
 - Calculate child reliability

\[
f_c = \frac{f_a w_a \rho_{ac} + f_b w_b \rho_{bc}}{w_a \rho_{ac} + w_b \rho_{bc}}
\]
Fitness estimation

- Individuals have fitness value (f) and reliability (w)
- When parents generate offspring:
 - Calculate parent-child similarity (ρ)
 - Estimate child fitness
 - Calculate child reliability

\[
w_c = \frac{(w_a \rho_{ac})^2 + (w_b \rho_{bc})^2}{w_a \rho_{ac} + w_b \rho_{bc}}
\]
Appendix - Evolving Swarm-GAP

- Fitness estimation
 - Individuals have fitness value \((f)\) and reliability \((w)\)
 - When parents generate offspring:
 - Calculate parent-child similarity \((\rho)\)
 - Estimate child fitness
 - Calculate child reliability
 - Maintain reliability

If \(w_c < \text{threshold}\): \(f_c \leftarrow \text{evaluate}(c)\);
A few individuals are always evaluated.
Appendix - GA parameters

• Tournament selection (2 participants)
 – With elitism
• One-point crossover
• Crossover probability: 0.9
• Mutation probability: 0.01 per locus
• 100 generations
• 30 individuals