
Characterizing Top Ranked Code Examples in Google

Andre Hora

Department of Computer Science
Universidade Federal de Minas Gerais (UFMG)

Belo Horizonte, Brazil

Abstract

Developers often look for code examples on the web to improve learning
and accelerate development. Google indexes millions of pages with code exam-
ples: pages with better content are likely to be top ranked. In practice, many
factors may influence the rank: page reputation, content quality, etc. Conse-
quently, the most relevant information on the page, i.e., the code example, may
be overshadowed by the search engine. Thus, a better understanding of how
Google would rank code examples in isolation may provide the basis to detect
its strengths and limitations on dealing with such content. In this paper, we
assess how the Google search engine ranks code examples. We build a website
with 1,000 examples and submit it to Google. After being fully indexed, we
query and analyze the returned examples. We find that pages with multiple
code examples are more likely to top ranked by Google. Overall, single code
examples that are higher ranked are larger, however, they are not necessarily
more readable and reusable. We predict top ranked examples with a good level
of confidence, but generic factors have more importance than code quality ones.
Based on our results, we provide insights for researchers and practitioners.

Keywords: Code Examples, API Usage, Software Quality, Code Search,
Google Search Engine

1. Introduction

A code example is a snippet of reusable source code that illustrates how a
programming problem can be solved [41, 55]. Code examples improve learn-
ing [31, 70], support reuse [30, 64, 95], and accelerate development [84, 92]. In
practice, developers often rely on web search engines, such as Google, to find
code examples [27, 33, 42, 60, 66, 82, 83, 86]. Previous studies report that de-
velopers may spend up to 20% of their time looking for code examples on the
web [6, 60, 64]. For instance, a popular programming website, W3Schools [93],

Email address: andrehora@dcc.ufmg.br (Andre Hora)

Preprint submitted to Elsevier March 30, 2021

has over 3 billions pageviews per year.1 Therefore, accessing good code examples
is essential to software development in the current days [59].

The Google search engine indexes millions of webpages that include code
examples [90]. Naturally, pages with better content are likely to be top ranked,
grabbing more attention and click from the users [23, 35, 90]. In practice, many
factors may in
uence the rank: page reputation, page domain, content quality,
to name a few [20, 23, 29, 45]. However, these factors are inherently hard to
enumerate and assess as the search engines do not reveal which particular ones
they rely on when determining a website ranking [20]. For instance, prior work
reports that there are over 200 di�erent factors used by Google to calculate
a page's rank [20]. This way, the literature has examined several facets of
web search engines to better understand how they work, to improve content
discovery, or even to assess their fairness. For instance, techniques are proposed
to audit black-box algorithms [16, 74], empirical studies are performed to assess
how personalization of web search may a�ect the results [29, 45], to identify
factors related to highly ranked webpages [20], to assess partisanship of search
results [17, 36], to analyze search snippets [15, 40], to name a few.

In practice, code example webpages are composed not only by code, but
they are mixed with other elements, such as code explanations (see Figure 1).
Indeed, code examples are often enriched with textual description: as Google is
a general web search engine, natural language is a solution to bypass the lack
of expression inherent of programming language [10, 28, 37, 59, 96]. However,
these factors may introduce a side e�ect: we are left unsure about the quality
of the code examples themselves. For instance, a webpage with a poor code
example could be top ranked due to its good textual description (we present
concrete examples in Section 2). This way, it is important to understand how
Google would rank code examples in isolation,i.e., without any other page ele-
ments. In this case, we could query and assess the characteristics of top/bottom
ranked code examples and verify their quality aspects, for instance, whether
good coding practices [9, 53, 58, 59, 75, 77] are found in higher ranked ones.
This may provide the basis to detect the possible strengths and limitations of
the search engine in dealing with code. While previous studies propose dedi-
cated code search engines [3, 12, 42, 46, 54, 80] and techniques to rank code
examples [8, 28, 32, 41, 58], to the best of our knowledge, no study assesses how
Google | the de facto web search engine [78] | deals with such content.

In this paper, we perform an empirical study to assess how the Google search
engine ranks code examples. We analyze the characteristics of the top and bot-
tom ranked code examples in return to code search queries. We focus on code
examples that describe the usage of APIs, which are often the target of code
search [8, 62, 72]. For this purpose, we perform the following steps.First , we
select 100 API methods from popular libraries and frameworks.Second, we col-
lect from programming websites 1,000 code examples about the selected APIs,
including didactic and real software examples.Third , we build a website, host

1https://www.w3schools.com/about/default.asp

2

the code examples on webpages, and submit this website to the Google search
engine. Lastly, after being fully indexed by Google, we query for APIs and
assess the returned code examples in this controlled environment. Speci�cally,
we investigate: (i) the rank of webpages with single and multiple code exam-
ples; (ii) the rank of webpages with didactic and real software code examples;
(iii) the characteristics of top/bottom ranked code examples, such as their size,
readability, reusability, and query similarity; and (iv) whether top ranked code
examples can be predicted. We then propose the following research questions:

ˆ RQ1 (single vs multiple): How are single and multiple code examples
ranked? We �nd that webpages with multiple code examples are more
likely to be top ranked by Google than webpages with single examples.
82% of the webpages with multiple code examples are top ranked.

ˆ RQ2 (didactic vs real software): How are didactic and real software code
examples ranked?Code examples created for didactic purposes are more
likely to be higher ranked than code examples originated from real software
systems. However, this is likely to happen because they have more API
references and tokens density, not because they have better quality.

ˆ RQ3 (top vs bottom): What are the characteristics of top ranked code
examples? Overall, top ranked code examples are larger and have more
API references. We �nd that readable and reusable code examples are not
necessarily top ranked.

ˆ RQ4 (prediction and importance): To what extent can we predict that a
code example will be top ranked? What are the most important charac-
teristics? We can predict top ranked code examples with a good level of
con�dence (in the best case, precision: 79%, recall: 70%, and AUC: 89%).
Generic factors (e.g., term frequency and size) are more important than
code quality factors (e.g., reusability).

Based on our results, we provide insights to drive future research on code
search. Moreover, we provide insights to improve the user experience of code
example webpages, which is a practice encouraged by Google to bene�t users
and facilitate content discovery [79].

Contributions. This study has three major contributions: (i) we provide the �rst
empirical study to assess how the Google search engine ranks single/multiple
and didactic/real software code examples (Sections 4.1 and 4.2); (ii) we study
factors associated to top/bottom ranked code examples and investigate whether
these factors can predict rank positions (Sections 4.3 and 4.4); and (iii) we
provide guidelines to improve code example webpages and present insights to
code search researchers (Section 5).

Structure of the paper. Section 2 presents a motivating example. Section 3
describes our study design. Section 4 presents our results and Section 5 discusses
them. Section 6 states the threats to validity. Finally, Section 7 presents the
related work and Section 8 concludes the paper.

3

2. Motivating Examples

Developers often look for code examples on the web [27, 82, 83, 86]. They are
commonly interested in how to use APIs provided by libraries and frameworks [8,
62, 72]. Typically, a code search query consists of API tokens,i.e., class and
method names [60]. For example, if a developer desires to retrieve code examples
about an API, for instance, File.mkdirs ,2 he might simply query for \ File
mkdirs". Figure 1 presents the �rst result for this query on Google, a code
example webpage provided by the website tutorialspoint.3

Figure 1: Code example webpage (Tutorialspoint).

In addition to the code example, there are other elements in the webpage,
such as API description and related APIs. According to good coding prac-
tices [53, 59], the code example itself could be slightly better: variable names
could be more descriptive (e.g., file instead of f and isDirectoryCreated

2https://docs.oracle.com/javase/8/docs/api/java/io/File.html
3https://www.tutorialspoint.com/java/io/file_mkdirs.htm

4

instead of bool), code comments could be more detailed (e.g., \print if the di-
rectory is created" instead of \print"), and code could be more self explained
(e.g., by handling the case the �le already exists).

Another programming website, JavaTutorialHQ,4 presents a slightly richer
code example of the same API, as shown in Figure 2: it has intention revealing
variable names, descriptive comments, and clearer code.5 This webpage, how-
ever, is ranked as third in our search. Indeed, Google search results depend
on several factors, such as page reputation, content, domain, location, query,
etc. [20, 23, 29, 45], thus, to better understand how the code examples them-
selves are ranked, they should be hosted and queried under the same conditions.

Figure 2: Code example (JavaTutorialHQ).

Example 1. As a proof of concept, we performed a simple experiment: we
analyzed how Google would rank code examples when they are under equivalent
conditions (i.e., without code explanations and hosted on the same domain). We
collected 10 code examples ofFile.mkdirs from popular programming websites
(including the two examples aforementioned) and hosted them on 10 distinct
webpages. After being indexed by Google, we performed the same previous
query \ File mkdirs ", but now restricted to this website. 6 The result was the
opposite of the �rst query: the richer code example (i.e., Figure 2) was now top
ranked and the poorer code example (i.e., Figure 1) was bottom ranked. While
other factors may have contributed to better rank the poorer code example in
the �rst query, the richer code example was favored in the second query, when
the conditions were equivalent.
Example 2. To further assess the previous result, we performed a larger anal-
ysis, with 1,000 code examples and 100 API methods. That is, for each API

4http://javatutorialhq.com/java/io/file-class-tutorial/mkdirs-method-example
5For simplicity, we only show code example itself in Figure 2, and not the full webpage.
6Restricted queries can be done with the \ site: " command provided by Google.

5

method, we collected 10 code examples, kept track of the code example that
was originally top ranked by Google, hosted each on a single webpage on our
website, and made them indexed by Google. Then, for each API, we performed
one query restricted to our website (100 queries in total) and veri�ed the rank
position of the code examples. The result was also di�erent: only about 20% of
the code examples originally top ranked by Google were ranked as �rst in our
controlled environment when only the code examples were available.
Problem and Proposed Solution. This initial analysis provides evidence
that code examples may be obfuscated by other factors. That is,under equiva-
lent conditions, the ordering of the returned code examples may be completely
distinct from when they are hosted on their native websites. In this study, we
propose to host code examples on a website and make them indexed by Google,
so we can focus only on the code examples, without any external (e.g., page
reputation, domain, users' location) nor internal (e.g., code explanations) inter-
ference. Particularly, these code examples should have distinct characteristics
(e.g., size, readability, origin, etc.), so we can better pro�le them. Then, we can
rely on the Google search engine, query, and assess the returned code examples.
This may provide the basis to better understand how Google \sees" the major
content of programming websites (i.e., the code examples themselves), which
is the sole factor that varies among our code example webpages and that the
website owner can directly control, change, and improve.

3. Study Design

Figure 3 presents an overview of the proposed approach to assess how the
Google search engine ranks code examples. It includes �ve major steps: (1)
selecting APIs, (2) collecting code examples, (3) indexing code examples, (4)
querying code examples, and (5) assessing query results. We detail each step in
the following subsections. Our results are publicly available.7

Figure 3: Overview of the proposed approach.

7https://github.com/andrehora/jss-code-examples

6

3.1. Selecting APIs
In this study, we focus on code examples that describe the usage of APIs,

which are often the target of code search on the web [8, 62, 72]. Therefore, we
start by selecting important libraries and frameworks, from where the code ex-
amples will be extracted. We select Google Guava, Java SE, Apache Commons,
and Spring Framework (Table 1) due to two reasons. First, these systems are rel-
evant libraries and frameworks that have a large community of users. Second,
due to their popularity, many programming websites provide code examples
about their APIs. Having programming websites with code examples about
these libraries and frameworks is important because we need to manually col-
lect code examples about their APIs (as explained in the following subsections).
Thus, if we had selected less popular systems, the manual task of �nding code
examples would not be feasible.

Table 1: Selected APIs.

System API
Class name Method name

Preconditions checkArgument, checkElementIndex, checkNot-
Null, checkPositionIndex, checkState

Ints asList, concat, saturatedCast, toArray, try-
Parse,

Google Guava Lists asList, charactersOf, newArrayList, partition,
reverse

Sets cartesianProduct, di�erence, intersection, pow-
erSet, union

Files append, createTempDir, readLines, toByteAr-
ray, write

Bu�eredReader close, read, readLine, reset, skip
File exists, getAbsolutePath, isDirectory, listFiles,

mkdirs
Java SE ArrayList add, contains, get, isEmpty, size

HashMap containsKey, containsValue, isEmpty, put,
putAll

Scanner hasNextLine, match, nextLine, useDelimiter,
useLocale

Base64 decode, decodeBase64, encodeBase64, encode-
Base64URLSafeString, isArrayByteBase64

CSVFormat parse, withCommentMarker, withDelimiter,
withHeader, withQuote

Apache Commons FilenameUtils concat, getExtension, isExtension, normalize,
separatorsToUnix

IOUtils closeQuietly, copy, readLines, toByteArray,
toInputStream

StringUtils isBlank, join, split, substringBefore, trimToNull

SpringApplication addListeners, exit, run, setAdditionalPro�les,
setBannerModemidrule

ApplicationContext containsBean, getBean, publishEventmidrule,
getAutowireCapableBeanFactory, getBean-
De�nitionNames

Spring Framework BindingResult getFieldErrors, getGlobalErrors, hasErrors,
hasFieldErrors, rejectmidrule

RestTemplate exchange, getForEntity, getForObject, post-
ForObject, setMessageConvertersmidrule

ModelAndView addAllObjects, addObject, getModel, hasView,
setViewName

The selected systems can be described as follows. Guava is a library that

7

includes core features to handle collections and utilities for concurrency, IO,
hashing, among others.8 Java SE provides basic functionalities that are used
by almost all Java applications, such as collections, date and time facilities,
among others.9 Apache Commons provides a large set of reusable components.10

Lastly, the Spring Framework supports the creation of enterprise applications in
many scenarios and architectures, such as web apps, microservices, and cloud.11

For each system, we select �ve classes, and, for each class, we select �ve meth-
ods, that is, 25 methods per system and 100 methods in total, as presented in
Table 1. We rely on API popularity [50] to select these APIs in order to maxi-
mize the chance we �nd code examples on the web. That is, the more popular
an API is, the more examples we are likely to �nd on the web. Speci�cally, we
adopt the rankings at class and method levels12 proposed by the programming
website ProgramCreek [65] as a proxy of API popularity and as a solution to
objectively select the 25 API methods per system.

3.2. Collecting Code Examples

The next step in our experimental design is to collect code examples for the
100 selected API methods. We look for code examples on the web by querying
on Google (on a private browser session) the API full name followed by the
word \ example". The word \ example" is used to maximize the chance we �nd
proper API examples, and not API documentation [90]. For instance, for the
Guava API Ints.concat , we query for \com.google.common.collect.Ints.concat
example". Thus, for each API, we manually collect 10 code examples returned
by the query. We take special care to collect �ve didactic (i.e., created for
didactic purposes) and �ve real software examples (i.e., originated from real
software systems), thus, totaling 1,000 examples,i.e., 500 didactic and 500 real
software. The collected code examples come from several programming websites,
such as ProgramCreek [65], Stack Over
ow [85], and Baeldung [1] among many
other that are often top ranked by the Google search engine [90].

3.2.1. Di�erentiating between didactic and real software examples
Didactic examples typically present only the information needed to under-

stand the API and do not include external context [8], as illustrated in Figure 4a
(code extracted from geeksforgeeks.org). In contrast, real software code exam-
ples are originated from software systems, as illustrated in Figure 4b (code
extracted from codota.com). Real software code examples often contain ex-
tra statements and references to other APIs than the target one, being more
complex, and di�cult to understand and reuse [8].

8https://github.com/google/guava
9https://docs.oracle.com/javase/8/docs

10 https://commons.apache.org
11 https://spring.io
12 https://www.programcreek.com/java-api-examples/index.php?action=index , https:

//www.programcreek.com/java-api-examples/index.php?action=top_java_methods

8

Figure 4: Code examples for the Guava API Ints.concat .

We perform a manual classi�cation of the code examples as didactic or real
software ones. Speci�cally, we rely on their de�nitions to classify the examples.
For example, didactic code examples tend to be simpler and easier to understand
than real software ones, which often contain extra statements and references
to other APIs. As presented in Table 2, the didactic examples come from
113 programming websites, such as Stack Over
ow, Baeldung, Tutorialspoint,
and GeeksforGeeks. For instance, Baeldung, Tutorialspoint, and GeeksforGeeks
contain programming tutorials, articles, and guides, which typically include
educational code examples and explanations on how to use certain APIs.13 On
the other hand, the real software examples come from only 10 programming
websites, including ProgramCreek, Codota, JavaTips, and SearchCode. Those
websites are hubs of code examples that are (automatically) mined from external
software repositories like GitHub, Bitbucket, and GitLab. 14 The websites with
real software code examples typically present dozens or hundreds of examples
for the same API since they are automatically extracted from other sources.

13 Didactic code: https://www.baeldung.com/convert-input-stream-to-a-file
14 Real software code: https://www.programcreek.com/java-api-examples/?class=com.

google.common.collect.Lists&method=asList

9

Table 2: Origin of the code examples (top-10 websites).

Pos
Didactic Real Software

Website # Website #

1 stackover
ow.com 48 programcreek.com 407
2 baeldung.com 45 codota.com 33
3 tutorialspoint.com 36 javatips.net 25
4 alvinalexander.com 31 searchcode.com 12
5 geeksforgeeks.org 29 programtalk.com 8
6 javatutorialhq.com 17 javased.com 7
7 techiedelight.com 14 useof.org 3
8 howtodoinjava.com 13 zgrepcode.com 2
9 logicbig.com 12 javadocexamples.com 1
10 commons.apache.org 12 github.com 1

Distinct websites 113 10

To validate our manual classi�cation, we randomly selected 280 out of the
1,000 code examples in our dataset (95% con�dence level and 5% con�dence
interval). Then, we invited eight software developers with distinct experience
levels to classify those examples in didactic or real software. Each developer
rated 35 code examples as didactic or real software (8 x 35 = 280). Next,
we compared their classi�cation with ours. Figure 5 presents the results of
this analysis by developer and experience. Overall, the agreement between the
developers' classi�cation and ours is 80% (224 out of 280); Cohen's Kappa is
0.60, leading to close to substantial strength of agreement. Developers 1-5 have
�ve or more years of experience, whereas developers 6-8 have up to �ve years of
experience. Notice that, the agreement did not change signi�cantly according
to their experience. This way, we believe there is a natural subjective in the
classi�cation of the code examples as didactic or real software, however, the
cases in which there is agreement are signi�cantly more frequent.

Figure 5: Results of the survey with eight developers about the classi�cation in didactic and
real software code examples.

10

3.2.2. Characterizing the code examples
We assess the characteristics of the code examples with respect to their size,

documentation, readability, reusability, API references, and query similarity.

Size. We compute the size of the code examples in terms of (i) number of
lines of code, (ii) number of tokens, and (iii) density of tokens (i.e., number of
tokens/number of lines of code). In lines of code, we count all lines in the code,
including comments and blank lines. Small code may improve its understand-
ing [53]. Moreover, code examples should be concise and simple [59, 92].

Documentation. We compute the number and the ratio of comments in a
code example by considering the inline comments (i.e., // in Java). In contrast
to multiline comments, inline comments are typically mixed with code and are
more likely to include relevant explanations about the studied code snippets.
Code comments are important to any piece of code [48], however, they are
even more relevant to code examples as they provide help to the developers
understanding the API usage [59].

Readability. It is a human judgment of how easy a text is to understand [9, 58].
We rely on the metric proposed by Scalabrinoet al. [75, 77] to evaluate the
readability of a code example, which have a higher accuracy score when evalu-
ated against other state-of-the-art models. This metric uses textual properties
of source code that aid in characterizing its readability, including comments
and identi�ers consistency, narrow meaning identi�ers, and textual coherence.
We used the authors' implementation of the metric.15 Given a code example,
the readability metric produces values between 0 (low readability) and 1 (high
readability). According to this metric, the didactic code example presented in
Figure 4a presents much higher readability (0.82) than the real software example
shown in Figure 4b (0.33), which seems quite reasonable.

Reusability. This metric assesses the facility to reuse a given code example.
We adopt a modi�ed version of the original metric of Moreno et al. [58] to
evaluate reusability:

Reuse=

(
#library object types

#object types if # object types> 0

1:0 otherwise
(1)

where #object typesis the total number of di�erent object types used by the code
example, and #library object types is the number of object types used by the
code example and belonging to the target library (i.e., Guava, Spring, or Apache
Commons) plus the Java native object types (which can be reused by any code
example). The reuse metric varies from 0 to 1: 0 means that all object types
in the code example are custom or external objects (low reusability), while 1
indicates that all object types in the code example belong to the target library or
that no object types are present in the code example (high reusability) [58]. The
rationale is that reusing a code example that uses custom/external object types

15 Tool available at: https://dibt.unimol.it/report/readability

11

requires importing those objects into the production code, which represents an
extra work [58].

API references. We compute the number of API references (i.e., references
to the target API class and method) in the code examples. We also compute
the ratio of API references (i.e., number of API references / number of tokens),
which measures how frequently a term occurs in a document (aka, Term Fre-
quency [52]). Ideally, when looking for code examples on the web, developers
may expect to see references to the desired API on the code.

Query similarity. We measure query similarity to the code examples with two
metrics: cosine similarity16 and soft cosine similarity.17 Cosine similarity [73] is
largely adopted in information retrieval and code search literature [28, 41, 60] to
compare the similarity between two documents (or two vectors) independently of
their size. The soft cosine similarity [81] is a soft similarity measure: it assumes
that similarity between features is known (e.g., from a synonym dictionary).18

For example, the words \play" and \game" are di�erent but semantically re-
lated [81], thus in the soft cosine similarity, they are not considered completely
distinct as in the traditional cosine similarity.

3.2.3. Measuring the code examples
Table 3 presents the median values of the metrics for all, didactic, and real

software code examples. It also presents the statistical signi�cance of the di�er-
ence between the metric values of the didactic and real examples by applying
the Mann-Whitney test at alpha value = 0.05. To show the e�ect-size of the
di�erence between them, we compute Cli� 's Delta (d). Note that the didactic
and real software code examples are di�erent with at least a small e�ect for
all metrics unless tokens density. As expected, the didactic code examples are
more readable (0.66 vs 0.39) and reusable (1.0 vs 0.78) than the real software
ones; the di�erence is statistically signi�cant with a large e�ect. Moreover, the
median value of comments is zero for all, didactic, and real software code ex-
amples, but their third quartiles are 1, 3, and 0, while the mean values are 1,
1.59, and 0.54, respectively. Thus, as expected, the didactic code examples are
more likely to have comments (the di�erence is also statistically signi�cant with
a small e�ect).

3.3. Indexing Code Examples

After collecting and measuring the code examples, we move to the third
step of our experimental design. Our goal here is to make each code example
indexed by the Google search engine, so we can query and assess them afterward.
Notice that this is not a trivial task; the Google search engine has many quality

16 We relied on the Python lib sklearn, method cosine similarity.
17 We relied on the Python lib gensim, method softcossim.
18 Adopted dataset: https://github.com/RaRe-Technologies/gensim-data/tree/

fasttext-wiki-news-subwords-300

12

Table 3: Metric values of the collected code examples. e�ect-size : negligible for d < 0:147,
small for d < 0:33, medium for d < 0:474, and large otherwise [71].

Metric All Didactic Real Software p-value e�ect-size

Lines of code 13.0 11.0 15.00 < 0.01 small
Tokens 49.0 40.0 55.00 < 0.01 small
Tokens density 3.7 3.7 3.67 0.45 negligible

Comments 0.0 0.0 0.0 < 0.01 small
Comments ratio 0.0 0.0 0.0 < 0.01 small

Readability 0.54 0.66 0.39 < 0.01 large
Reusability 1.0 1.0 0.78 < 0.01 large

API references 3.0 4.0 3.0 0.00 small
API ratio 0.08 0.11 0.06 < 0.01 medium

Cosine similarity 0.26 0.32 0.19 < 0.01 medium
Soft cosine simi. 0.27 0.35 0.21 < 0.01 medium

restrictions [35]: \The indexing of your content by Google is determined by
system algorithms that take into account user demand and quality checks" [38].

For this purpose, we created a website and hosted each code example on a
single webpage, totaling 1,000 webpages with code examples. We embedded the
code examples in<pre> tags so we have preformatted text, without any syntax
highlighting. Also, the code examples are inside<code> tags to indicate that
the text is a fragment of computer code. Using<pre><code> is the standard
in HTML to represent multiple lines of code on webpages, as suggested by
Mozilla: \ To represent multiple lines of code, wrap the< code> element within
a < pre> element. The< code> element by itself only represents a single phrase
of code or line of code".19 Indeed, this combination <pre><code> is adopted by
programming websites like Stack Over
ow to show code content.

In order to have the webpages indexed, we followed good practices suggested
by Google [38], for instance, we provided useful content, we managed our web-
site via the Search Console,20 we submitted the pages via a sitemap, we made
the webpages mobile responsive,21 we performed (and passed) mobile-friendly
tests,22 and we created human intelligible URLs.23 By following these proce-
dures, our website was fully indexed by Google in two weeks { this information
is provided by the Google Search Console. Being fully indexed means that the
1,000 webpages can appear in Google search results.

In addition to the 1,000 webpages with single examples, we also submitted
to Google, for each API, one webpage including the 10 previously selected API

19 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/code
20 https://support.google.com/webmasters/answer/9128668?hl=en
21 https://developers.google.com/search/mobile-sites
22 https://search.google.com/test/mobile-friendly
23 https://support.google.com/webmasters/answer/76329?hl=en

13

code examples (for a total of 100 additional webpages). These webpages with
multiple examples are intended to support answering RQ1, which addresses the
ranking of single and multiple code examples. The 100 webpages with multiple
examples were also indexed by Google. Thus, in total, we have 1,100 (1,000 +
100) indexed webpages. That is, each API has 11 webpages with code examples:
10 webpages with single code examples and one with multiple examples.

3.4. Querying Code Examples

After being fully indexed by Google, we are able to query the code examples.
To automate this task, we created a Google Custom Search Engine [14] for our
website. It allows us to programmatically query the content of our website via
the o�cial Google Search API [24]. By relying on the Google Search API, we
ensure that all queries are subjected to the same query environment, avoiding
being subjected to manual queries in the browser.

Having set up the search environment, we need to perform the queries to
retrieve the API code examples. As stated in Section 2, typically, a code search
query consists of API tokens,i.e., class and method names. For example, de-
velopers may query for \File mkdirs " to �nd code examples of File.mkdirs .
Thus, our queries followed the format \< class-name> < method-name> ", as
also previously adopted by the code search literature [60].

Finally, with the support of the Google Search API, we performed 1,500
queries in a period of 15 days in June 2019; each day we run 100 queries, that
is, one query for each API. We performed this analysis for 15 days because
it was the necessary period for the returned results to become stable.The
results reported in this paper refer to the 15th day. Moreover, we replicated
this analysis 16 months later (in November 2020) to assess whether results have
signi�cantly changed over time (e.g., due to possible major changes in Google
search algorithms). We restricted each query to the context of its own API in
order to facilitate the analysis of returned results.24 This way, each query may
return at most 11 ranked results: 10 webpages with single code examples and
one webpage with multiple code examples. In RQ1, we consider all webpages
in the analysis, while in RQs 2, 3, and 4 we only consider the webpages with
single examples.

3.5. Assessing Query Results

Next, we describe how we answer each research question.

3.5.1. Single vs Multiple Code Examples (RQ1)
Ideally, one may expect that webpages with multiples examples should be

top ranked due to the following reasons.First , when looking for code examples,
it is intuitively better to see a webpage with multiple code examples rather than
only one. Indeed, most programming websites present several code examples per

24 Restricted queries can be done with the \ site: " command provided by Google.

14

page. Second, in practice, developers often inspect multiple results of di�erent
usages to learn from [28, 66], thus, having a webpage with several examples
facilitates this task.

We rely on three metrics to assess whether webpages with multiple exam-
ples are top ranked and measure their performance: FRank, SuccessRate@k,
and Mean Reciprocal Rank (MRR). These metrics are typically adopted in in-
formation retrieval and code search literature [28, 41, 51, 66, 97].

FRank is the rank position of the hit in the query results [66]. A smaller value
means lower inspection e�ort for �nding the desired result [28]. We recall that
the hit is the webpage with multiple code examples of an API, which would be
the best answer for a developer looking for code examples.

SuccessRate@k measures the percentage of queries for which more than one
correct result could exist in the top k ranked results [28, 41, 97]. In this analysis,
we consider the webpage with multiple code examples as the only correct result
for a query. We measure it as follows:

SuccessRate@k =
1

jQj

jQ jX

q=1

� (FRankq � k) (2)

where Q is a set of queries,� () is a function that returns 1 if the input is true
and 0 otherwise. A better code search engine should help developers to discover
the needed code example by inspecting fewer returned results. In this sense, the
higher the metric value, the better the code search performance [28]. We evalu-
ate SuccessRate@k whenk value is 1, 2, and 3. Commonly,k is evaluated with
1, 5, and 10, as these are typical sizes that users would inspect [28]. However,
in our study, each query may return at most 11 results, thus, to be rigorous, we
only assess the top 3 search results (i.e., k values from 1 to 3).

MRR is the average of the reciprocal ranks of results of a set of queries
Q [28, 51]. The reciprocal rank of a query is the inverse of the rank of the
�rst hit result [26, 28]. The higher the MRR value, the better the code search
performance [28]. We measure it as follows:

MRR =
1

jQj

jQ jX

q=1

1
FRankq

(3)

Importantly: In the following research questions, our goal is to assess the
code examplesindividually . Thus, in RQs 2, 3, and 4, we focus on the 1,000
code example webpages with single examples and exclude the 100 webpages
with multiple examples from the analysis.

3.5.2. Didactic vs Real Software Code Examples (RQ2)
In this research question, we compute the ranks of the didactic and real

software code examples. We analyze the statistical signi�cance of the di�erence
between the metric values of the didactic and real examples by applying the

15

Mann-Whitney test at alpha value= 0.05. To show the e�ect-size of the di�er-
ence between them, we compute Cli� 's Delta (d). We interpret the e�ect-size
values as negligible ford < 0:147, small for d < 0:33, medium for d < 0:474,
and large otherwise [71].

3.5.3. Top Ranked vs Bottom Ranked Code Examples (RQ3)
We compare the top and the bottom ranked code examples in three scenarios:

Top 1 vs Bottom 1, Top 3 vs Bottom 3, and Top 5 vs Bottom 5. The �rst is
more strict as it contrasts the very top with the very bottom returned code
example in each query. The last considers all code examples and compares the
top half with the bottom half code examples. We apply the Mann-Whitney test
and Cli� 's Delta e�ect-size to verify the signi�cance of the di�erence.

3.5.4. Prediction of the Code Examples and Importance of the Factors (RQ4)
In our last research question, we assess the importance of multiple metrics to

distinguish the top and the bottom ranked code examples. Speci�cally, we rely
on the Random Forest binary classi�er [49] to predict whether a code example
will be top or bottom ranked according to the 12 metrics described in the
previous subsections (i.e., lines of code, comments, readability, origin, etc.).
We select Random Forest due to several advantages, such as being robust to
noise and outliers [89]. Moreover, the Random Forest classi�cation power has
successfully been used to automate many Software Engineering tasks [18, 63, 89].
We use 10 times 10-fold cross-validation to evaluate the model e�ectiveness. We
train and test our classi�er in the three datasets of RQ3: Top 1 vs Bottom 1
(200 code examples), Top 3 vs Bottom 3 (600 code examples), and Top 5 vs
Bottom 5 (1,000 code examples); each dataset has half of top ranked and half
of bottom ranked, thus, we run the Random Forest binary classi�er 30 times,
10 on each dataset to predict top and bottom ranked ones. Following the 10-
fold cross-validation, for each dataset, we train a subset of examples and then
evaluate on another subset.

Before running the classi�er, we perform a correlation analysis on the 12
selected metrics. Correlated metrics may bias the results [39, 60], so it is im-
portant to detect and remove them. For this purpose, we verify a correlation
with a Spearman test on all metrics. The values of Spearman coe�cient ranges
from -1 to 1. Values close to -1 or 1 represent a high correlation, while values
close to 0 indicates no correlation. After, �nding correlated metrics, we select
one representative, as typically performed by the literature [60].

Finally, to assess the classi�er's e�ectiveness, we compute precision, recall,
and AUC (area under the curve), which are commonly adopted metrics in clas-
si�cation problems [18, 44]. Precision and recall measure the correctness and
completeness, respectively, of the classi�er in predicting whether a code example
will be top ranked. AUC is a commonly used measure to judge predictions in bi-
nary classi�cation problems: it refers to the area under the Receiver Operating
Characteristic (ROC) curve. According to the literature, AUC � 70% is consid-
ered reasonably good [47, 88, 89]. Lastly, to assess the most important factors,
we report the importance of the metrics according to the Gini Importance [39].

16

4. Results

4.1. RQ1: How are single and multiple code examples ranked?
Figure 6 presents the performance of the Google search engine for the metric

FRank: 82% of the webpages with multiple code examples (i.e., the hits) are
top ranked. That is, webpages with multiple code examples are more likely to
be top ranked by the Google search engine than webpages with single examples.

Figure 6: Rank of the �rst webpage with multiple examples (FRank).

Moreover, this ratio tend to be constant over time, as presented in Figure 7.
We �nd no major di�erence during the �rst 15 days of analysis in June 2019
(black bars): it started with 79% on the �rst day and increased/decreased by 1%
in the following days until remain constant at 82%. Besides, to verify whether
those results are stable over a long period, we report the same analysis 16 months
later (in November 2020, blue bars). We notice that the FRank had a small
growth, from 82% to 88%.

Figure 7: FRank over time.

Table 4 presents the performance according to the metrics SuccessRate@k
and Mean Reciprocal Rank (MRR) in the two analyzed periods (last day of
each period). The columns SuccessRate@1-3 present the results for Success-
Rate@k whenk is 1, 2, and 3. The results suggest that the overall performance
of the Google search engine is high to �nd the webpage with multiple code ex-
amples. For example, SuccessRate@3 value is 91%: this means that for 91%

17

of the queries, the webpages with multiple examples can be found within the
top 3 returned code examples. Finally, the MRR at 87% also represents a high
number, reinforcing that the hits are very often ranked in the �rst positions.
Notice that in November 2020, the metric values have increased, meaning that
the hits are even more consolidated in the top positions 16 months later.

Table 4: Overall accuracy. SR: Success Rate. MRR: Mean Reciprocal Rank.

Date SR@1 SR@2 SR@3 MRR

Jun, 2019 82% 87% 91% 87%
Nov, 2020 88% 92% 95% 93%

Summary of RQ1: Webpages with multiple code examples are more likely to
be top ranked by Google than webpages with single examples. 82% of the
webpages with multiple code examples are top ranked, while 91% are among
the top-3 returned results. Over time, webpages with multiple code examples
tend to be even more consolidate in top positions.

As detailed in our Study Design, from now on, we only consider the webpages
with single examples, that is, we do not consider the web pages with multiple
code examples in the following three analyses (RQ2, RQ3, and RQ4).

4.2. RQ2: How are didactic and real software code examples ranked?

In this research question, we assess the origin of the code examples. Figure 8
summarizes the results of 100 queries and their 1,000 returned code examples.
Each stacked column shows one position of the rank with the ratio of code
examples. Overall, the didactic code examples are more concentrated on higher
positions. For instance, position 1 has 67% of didactic and 33% of real software
code examples. Positions 2 and 3 also have more didactic code examples than
real software (60% vs 40% and 53% vs 47%, respectively). From positions 4 to
10, we notice a higher proportion of code examples coming from real software.
For example, position 10 includes 60% of real software and 40% of didactic.

Figure 8: Summary of the rank (didactic vs real software).

18

Table 5 presents a deeper analysis of the results shown in the previous �gure.
We assess the metrics of the didactic and real software code examples in the
ranking position 1 and 10. For each metric, we present the median values, the
p-valuesfor Mann-Whitney, and the e�ect-zie for Cli� 's Delta. For instance, on
the median, the didactic code examples in rank 1 have 17 lines of code, while
the real software ones have 18 (the di�erence is only negligible). In rank 10, the
didactic code examples are smaller than the real software ones (6.5 lines vs 13.5,
the di�erence is statistically signi�cant with a large e�ect). As lines of code,
most metrics change their proportions when we compare ranks 1 and 10, so we
cannot derive any concrete conclusion of their prevalence. However, two metrics
remain the same and are independent of the ranking positions: tokens density
and API references (presented in bold in Table 5). Tokens density has values
4.0/4.0 and 3.33/3.52 for the didactic and real software examples in ranks 1 and
10, respectively, both with negligible di�erences. Similarly, the number of API
references is equal independently of ranking positions (7.0/7.0 APIs in rank 1;
2.0/2.0 APIs in rank 10).

Table 5: Didactic vs real software code examples. D : didactic. RS: real software. pv: p-value.
es: e�ect-size. N : negligible, S: small, M : medium, and L: large.

Metric
Rank 1 Rank 10

D RS pv es D RS pv es

Lines of code 17.0 18.0 0.38 N 6.5 13.5 < 0.01 L
Tokens 66.0 72.0 0.50 N 20.0 46.0 < 0.01 L
Tokens density 4.0 4.0 0.87 N 3.33 3.52 0.79 N

Comments 2.0 0.0 < 0.01 L 0.0 0.0 0.63 N
Comments ratio 0.15 0.0 < 0.01 L 0.0 0.0 0.38 N

Readability 0.70 0.26 < 0.01 L 0.67 0.43 < 0.01 L
Reusability 1.0 0.7 < 0.01 L 1.00 0.75 < 0.01 M

API references 7.0 7.0 0.62 N 2.0 2.0 0.54 N
API ratio 0.11 0.12 0.33 N 0.12 0.06 < 0.01 L

Cosine similarity 0.37 0.38 0.36 N 0.27 0.18 < 0.01 L
Soft cosine simi. 0.43 0.41 0.28 N 0.33 0.19 < 0.01 M

Interestingly, Table 3 in Section 3 shows that overall the didactic and real
software code examples are equal only in 1 out of 11 metrics (i.e., tokens density,
with a negligible di�erence). In contrast, as presented in Table 5, the top ranked
didactic and real software examples are equal in 7 out of 11 metrics (i.e., their
di�erences are negligible in rank 1). That is, independently of being didactic or
real software, top ranked code examples are similar in terms of size (3 metrics),
API references (2 metrics), and query similarity (2 metrics).

19

Summary of RQ2: Overall, code examples created for didactic purposes are
more likely to be top ranked by the Google search engine than code examples
originated from real software systems. However, this is likely to happen simply
because they have more API references and tokens density (i.e., not because
didactic code examples are more readable or reusable).

4.3. RQ3: What are the characteristics of top ranked code examples?

Tables 6, 7, and 8 compare the characteristics of the top and the bottom
ranked code examples. It shows the median metric values of the top and the
bottom code examples, thep-value for the Mann-Whitney test, and the e�ect-
size for the Cli� 's Delta.

Overall results. We �nd many di�erences between the top and the bottom
ranked code examples: independently of the comparison, top ranked code exam-
ples are statistically larger and have more API references. However, the disparity
is broader in the comparison of Top 1 vs Bottom 1,i.e., when we contrast the
�rst and the last returned code example of each query (Table 6). In this case,
there are four metrics in which the di�erences are statistically signi�cant with
large e�ect (lines of code, tokens, API references, and cosine similarity), four
metrics with medium e�ect (tokens density, comments, comments ratio, and
soft similarity), one with small e�ect (API ratio), and two negligible (readabil-
ity and reusability). The comparison of Top 3 vs Bottom 3 shows a statistically
signi�cant di�erence with at least a small e�ect in 8 metrics (Table 7). Finally,
the comparison of Top 5 vs Bottom 5 still presents some di�erences, but mostly
with a small e�ect (Table 8). Next, we further discuss each metric category.

Table 6: Top 1 vs bottom 1 ranked code examples.

Metric
Top 1 vs Bottom 1

Median Top Median Bottom p-value e�ect-size

Lines of code 17.5 9.0 < 0.01 large
Tokens 69.0 33.0 < 0.01 large
Tokens density 4.04 3.50 < 0.01 medium

Comments 1.0 0.0 < 0.01 medium
Comments ratio 0.10 0.0 < 0.01 medium

Readability 0.57 0.53 0.17 negligible
Reusability 1.0 1.0 0.09 negligible

API references 7.0 2.0 < 0.01 large
API ratio 0.11 0.08 < 0.01 small

Cosine similarity 0.38 0.08 < 0.01 large
Soft cosine simi. 0.42 0.21 < 0.01 medium

Size. Top ranked code examples are larger in the number of lines of code
and tokens in the three comparisons. In the �rst comparison, the top ranked

20

Table 7: Top 3 vs bottom 3 ranked code examples.

Metric
Top 3 vs Bottom 3

Median Top Median Bottom p-value e�ect-size

Lines of code 16.0 10.0 < 0.01 medium
Tokens 59.0 35.0 < 0.01 medium
Tokens density 3.94 3.62 < 0.01 small

Comments 0.0 0.0 < 0.01 small
Comments ratio 0.00 0.00 < 0.01 small

Readability 0.55 0.54 0.18 negligible
Reusability 1.0 1.0 0.12 negligible

API references 5.0 3.0 < 0.01 large
API ratio 0.10 0.09 0.02 negligible

Cosine similarity 0.32 0.09 < 0.01 small
Soft cosine simi. 0.34 0.24 < 0.01 small

code examples have, on the median, 17.5 lines of code and 69 tokens, while
bottom ranked are much smaller, with 9 lines and 33 tokens. In the other two
comparisons, the size di�erences are lower, although still statistically signi�cant.
Figure 9 breaks the code examples in two groups: small (LOC� 10) and large
(LOC > 10). It makes it clear that small code examples are more likely to be
bottom ranked, while large ones happen more in the top.

Figure 9: Rank by lines of code. Dataset: Top 5 vs Bottom 5.

Documentation. We �nd more code comments in the top ranked code ex-
amples than on the bottom ones. Both documentation metrics (i.e., comments
and comments ratio) are statistically signi�cant with at least a small e�ect in
the three comparisons. However, their median values are equal to zero in two
comparisons (Top 3 vs Bottom 3 and Top 5 vs Bottom 5).

Readability and reusability. We detect no di�erence between the top and
the bottom ranked code examples regarding readability and reusability metrics:
6 out of 6 comparisons have negligible e�ect. In the comparison Top 1 vs Bottom

21

Table 8: Top 5 vs bottom 5 ranked code examples.

Metric
Top 5 vs Bottom 5

Median Top Median Bottom p-value e�ect-size

Lines of code 15.0 12.0 < 0.01 small
Tokens 58.0 40.0 < 0.01 small
Tokens density 3.82 3.62 < 0.01 negligible

Comments 0.0 0.0 < 0.01 small
Comments ratio 0.0 0.0 < 0.01 small

Readability 0.53 0.54 0.61 negligible
Reusability 1.0 1.0 0.23 negligible

API references 5.0 3.0 < 0.01 medium
API ratio 0.09 0.07 0.01 negligible

Cosine similarity 0.30 0.07 < 0.01 small
Soft cosine simi. 0.31 0.23 < 0.01 small

1, despite the top ranked examples have almost double the size of the bottom
ranked ones (17.5 vs 9 LOC), they have equivalent readability and reusability.
Thus, overall, top and bottom code examples are equally reusable and readable.

API references. The top ranked code examples have more references to the
target API than the bottom ones in the three comparisons, all statistically
signi�cant with at least medium e�ect. For instance, on the median, the top 1
code examples have 7 API references, while the bottom 1 code examples only
have 2. However, when we look at the ratio of API references, the di�erences
are negligible in two cases and small in one. That is, the absolute number of
API references is more important than the frequency to di�erentiate the top
and bottom ranked code examples.

Query similarity. Lastly, we �nd that the top ranked code examples are more
similar to their queries than the bottom ones in all comparisons for both cosine
similarity and soft cosine similarity. This is not surprising because query similar-
ity is an important factor in information retrieval to rank the documents [28, 60].
Moreover, the soft cosine similarity values are higher than the cosine similarity.
For instance, on the median, the cosine similarity values for the top 1 and bot-
tom 1 are 0.38 and 0.08, respectively, while the soft cosine similarity values are
0.42 and 0.21. This occurs because the soft cosine similarity is a more
exible
similarity measure that detects semantically related words [81].

Summary of RQ3: Overall, top ranked code examples by Google are larger,
have more comments and API references, and are more similar to the input
query. Readable and reusable code examples are not necessarily top ranked.

22

4.4. RQ4: To what extent can we predict that a code example will be top ranked?
What are the most important characteristics?

In this �nal RQ, we investigate whether we can predict top ranked code
examples as well as the most important factors on the prediction. Before run-
ning the Random Forest classi�er, we detect the correlated metrics. Figure 10
presents the Spearman correlation structure of our 12 metrics. We �nd four
groups of correlated metrics: (1) isdidactic and reusability, (2) comments and
comments ratio, (3) lines of code and tokens, and (4) API references, soft cosine
similarity, API ratio, and cosine similarity. To represent each group we select
(1) reusability, (2) comments, (3) lines of code, and (4) API references. Those
metrics are selected because they are easier to compute/understand or to judge
code quality. After the selection, we have 6 uncorrelated metrics (reusability,
comments, lines of code, API references, tokens density, and readability), which
are used in our classi�er.

Figure 10: Correlation structure of the 12 adopted metrics.

Table 9 presents the e�ectiveness of the Random Forest classi�er to predict
top and bottom ranked code examples. We report three con�gurations: Top 1
vs Bottom 1, Top 3 vs Bottom 3, and Top 5 vs Bottom 5. The three classi�ers
produce AUC � 70%, which is considered reasonably good [47, 88, 89]. The
prediction is less e�ective in the Top 5 vs Bottom 5 con�guration, which has
precision: 65%, recall: 60%, and AUC: 71%. On the other hand, the prediction
is more e�ective to distinguish the top 1 and the bottom 1 code examples. In
this case, precision is 79%, recall is 70%, and AUC is 89%.

23

	Introduction
	Motivating Examples
	Study Design
	Selecting APIs
	Collecting Code Examples
	Differentiating between didactic and real software examples
	Characterizing the code examples
	Measuring the code examples

	Indexing Code Examples
	Querying Code Examples
	Assessing Query Results
	Single vs Multiple Code Examples (RQ1)
	Didactic vs Real Software Code Examples (RQ2)
	Top Ranked vs Bottom Ranked Code Examples (RQ3)
	Prediction of the Code Examples and Importance of the Factors (RQ4)

	Results
	RQ1: How are single and multiple code examples ranked?
	RQ2: How are didactic and real software code examples ranked?
	RQ3: What are the characteristics of top ranked code examples?
	RQ4: To what extent can we predict that a code example will be top ranked? What are the most important characteristics?

	Discussion and Implications
	For Practitioners
	For Researchers

	Threats to Validity
	Related Work
	Conclusion

