3. Aplicacbes das equacgdes diferenciais de primeira ordem

Seccao 3. Aplicacdes das equac0Oes diferenciais de
primeira ordem
(Farlow: Sec. 2.3a2.6)

Chegou a altura de ilustrar a utilidade prética das equacdes diferenciais de primeira

ordem. Vamos ver que alguns problemas fisicos podem ser descritos por EDOsdeste tipo.

Decaimento radioactivo
A proporcao carbono-14/carbono-12 presente na matéria organica viva € constante.

No entanto, na matéria organica morta a quantidade de **C diminui com o tempo, a uma
taxa proporcional a quantidade existente. Se designarmos essa quantidade por Q, teremos

entdo gque a variacdo de Q por unidade de tempo é proporcional a Q:

DR_.
Dt Q.

em que k é uma constante de proporcionaidade. O sinal negativo € necessario por forma a
garantir que Q decresce como tempo. Serd mais correcto falar em termos de variagdo

instantanea:

Esta EDO resolve-se facilmente por separacéo de variaveis:

dEQ:-kdt P InQ=-kt+Cb Q=Ce™".

Sabendo que no inicio Q(t =0) =Q,, ent&o:

Q:Qoe-kt-

Estaresultado constitui a base do processo de datagéo por carbono-14.

22 Lei de Newton
O enunciado da 22 Lei de Newton diz- nos que o produto da massa pela aceleracéo de

um corpo € igual ao somatério das forgas a que esta sujeito:

ma=3 F.

Para um corpo em queda livre teremos assim:
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Exemplo

3. Aplicacbes das equacgdes diferenciais de primeira ordem

dv
m—=mg- kv,
dt

em que v é a velocidade do corpo, k o coeficiente de atrito e g a aceleracdo da gravidade.

Rearranjando a equacéo, obtemos:

ﬂ+£v: g
d m '

ou sgja, uma EDO linear de 12 ordemque pode ser resolvida por separacao de variavel s A

solucéo geral é:

kt
m

v="8 1 ce
K

Um péra-quedista, pesando 70 Kg, sdta de um avido e abre 0 péra-quedas passados 10 s.
Antes da abertura do péara-quedas, 0 seu coeficiente de atrito € kepg = 5 Kg S*, depois é Kgy
= 100Kgs?t.

a) Qual a velocidade do péra-quedista no instante
«@ em que se abre 0 para-quedas?

<T|*><
o 9o

i\ Ja vimos anteriormente qual € a equacdo
gue descreve a queda livre, bem como a sua

_ solucgéo:
v X= X1

oo oo om oo t=10 K ke
— ﬂ+ﬂV:g b V=E+Ce m
V=V dt o

A constante de integracdo € determinada a partir da
condicdo inicial:

V(t=0)=0b C=-19
kqu

A solucéo particular vementdo:

; / ! X=X
t=10

V=V,

T Esta EDO também pode ser resolvida pelo método do factor integrante (porqué)? Demonstre que desta
forma se obtém o mesmo resultado.

Pagina 2 da Seccéo 3



3. Aplicacbes das equacgdes diferenciais de primeira ordem

2 kel
v="98. ¢ T=70ms*
kSpq 8 2

b) Qual adistancia percorrida em queda livre?
Ja obtivemos na dinea anterior a forma como a velocidade do para-quedista varia
com o tempo, durante a queda livre. Sabemos também que a velocidade é a derivada da

distancia percorrida em ordem ao tempo. Ent&o:

dx mg & Kl
v=—P Xx=cydt+C= Ok—‘ él-e mTdt+C
dt Spq ﬂ
Ou sga
& kad
X:E§t+ﬂe m :+C
kSDq kSpq ﬂ
Aplicando a condicdo inicia:
X(t=0)=0p C =- ngz.
kSDCI
E a solucéo particular vem:
mg € kad ou

— e ™ -170.
Ksp @ k § A

Passados os tais 10 segundos, a distancia percorridafoi:

e 7a 510
0 98é'l.O —Ge - 173=392m.
S A

t=10sb x=

Esperemos que 0 nosso homem se tenha atirado do avido quando este se encontrava a uma
altura superior a 392 m, de contré&rio ter-se-a estatelado no chdo antes de abrir o para-

quedas...

¢) Qual a velocidade minima que o para-quedista podera atingir, apés a abertura do para-

guedas?
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solucéo de
estado
estacionario

3. Aplicacbes das equacgdes diferenciais de primeira ordem

Apbs a abertura do para-quedas a velocidade comeca a decrescer, devido ao maior
coeficiente de atrito, até que € eventuamente atingido um equilibrio entre a forca da
gravidade e a forca de atrito. A partir desse momento a vel ocidade permanece constante (é a
chamada velocidade limite). A evolucdo da velocidade apds a abertura do para-quedas é
mais uma vez dada pelalei de Newton:

ﬂ+ﬁv: g
d m

e asuasolugéo &

Koo

mi __cpd
=M e,

cpq

Para um tempo suficientemente longo (t ? 8) atinge-se a velocidade limite:

. 98 _
v, =lmv(t) =—=—_——=6.86ms" .
®¥ k 100

E interessante notar que poderiamos chegar a este resultado sem ter que resolver a equagio
diferencial. Realmente, apds ser atingida a velocidade limite, esta permanece constante ao

longo do tempo, ou sgja, % = 0 apartir desse instante. Da equacéo diferencial acima:

k R k
ﬂ+ Cpqﬂ:gu ﬂ:g_ @y,
d  m kg, dt m
logo:
N_op g- y=gQ y="9
dt Kk

gue é o mesmo resultado que anteriormente.

Esta solucéo, que corresponde ao valor constante que a variavel dependente atinge
para um tempo teoricamente infinito, € chamada solucdo de estado estacionério.

Equacdes de balanco
Um tipo de problema muito comum em Engenharia Quimica consiste em efectuar

um balanco massico, volimico ou energético a um determinado sistema aberto (um reactor
quimico, por exemplo). Vamos aqui ver um exemplo simples de como enunciar este
problema em termos de equacdes diferenciais.
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Equacéo de
balango

Exemplo

3. Aplicacbes das equacgdes diferenciais de primeira ordem

Antes de mais, convém esclarecer em gue € que consiste um “balanco”. Em termos
simples, uma equacdo de balanco a uma determinada grandeza (volume de liquido num
tanque, massa de um reagente num reactor, sacos de batatas numa mercearia...) € escrita na
forma

Acumulacdo = Entradas — Saidas

As “entradas” e “saidas” designam a taxa de entrada ou saida da grandeza em causa no
sistema. Por exemplo: o Sr. Manuel constatou que entram 5 sacos de batatas por dia na sua
mercearia (vindos do fornecedor) e saem 3 sacos de batatas por dia (vendidos aos clientes).
A “acumulacdo” designa a taxa de variagdo com o tempo da grandeza em causa. Por
exemplo: O Sr. Manuel concluiu que se acumulam 2 sacos de batatas por dia na mercearia.
Se a acumulacdo for negativa, tal indica uma diminuicdo da quantidade balanceada com o

tempo, passando-se 0 oposto se a acumulacdo for positiva.

Qin C:in

Cout :{>

Qout Cout

Vamos considerar um problema de mistura num tanque bem agitado® como o
representado na figuraacima. Pretendemos saber como € que a concentragéo do soluto A no
tangque varia ao longo do tempo.

Estdo definidas as seguintes varidveis de processo:
Caudal total de entrada (constante) = Qn (n/hr)
Concentracao de entrada do componente A (constante) = Ci, (g/nT)

* Dizemos gue um tanque € “bem agitado” quando a concentragdo de soluto(s) no seu interior é uniforme em
todos os pontos do meio liquido.
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3. Aplicacbes das equacgdes diferenciais de primeira ordem

Caudal tota de saida (constante) = Qoy (M/hr)
Concentraggo de saida do componente A = Coyt (g/nT)
Concentrago no tanque do componente A = Coyt (g/nT)8
Volume de liquido no tanque = V (nt)

E conhecida a seguinte condigdo inicia: t=0p C,, =C?

out?

V=V,
Facamos agora o balango massico ao componente A:
Acumulacao de A = Entradas de A— Saidas de A.
Ou sga
Variagdo da massa de A no tanque por unidade de tempo =
= Massa de A que entra por unidade de tempo—

— Massa de A que sai por unidade de tempo.

Como podemos reescrever esta equacdo em termos mais “mateméticos’? A massade A no

D(VC.,)

tanque é dada por VCoy;, 1090, a sua variacdo com o tempo sera dada por o ou, em

d(VC.,)
dt

termos de variagdo instantanea: . Por outro lado, a nassa de A que entra por

unidade de tempo é dada por CinQin, enquanto que a nassa de A que sai por unidade de
tempo é dada por CouiQout- L0gO, a equacéo de balanco fica:

d (VCOUt )

dt :CinQn - Cothout.

Esta € uma EDO de primeira ordem, em que a variavel dependente € a concentracéo de A no
tanque, Cou,. ApOS escrever uma equacdo de balanco é sempre boa ideia verificar a
consisténcia das unidades. Ou sgja, verificar se todas as parcelas da equagéo tém as mesmas
unidades. Se tal ndo se verificar, algo esta errado no nosso balango! Vamos ver entdo se a

equacdo anterior € consistente:

m3 ’ i
volume” concentracao _ m _

tem unidades de; 9 ,
tempo hr hr

d (VCOUt )
ot

3
C,.Q., eC,.Q,. témunidades de: concentracdo” caudal :%’ r:—r = %
m

8 Porque razéo dizemos que a concentracdo de A no tanque éigual aconcentragdo nacorrente de saida, Coy?
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3. Aplicacbes das equacgdes diferenciais de primeira ordem

Todas as parcel as tém realmente unidades de g/hr, indicando que o balanco € consistente.
Prossigamos entéo: temos que resolver a EDO que define o balanco ao soluto A.

Antes disso, porém, devemos ter em atencdo que o volume de liquido no tanque, V, se

encontra dentro da derivada. Para podermos resolver a equacéo diferencial necessitamos de

saber como € que V varia com o tempo! Para tal, temos que efectuar um balanco volimico

ao tanque:
Variacdo de volume de liquido A no tanque por unidade de tempo =
= Volume de liquido que entra por unidade de tempo —
— Volume de liquido que sai por unidade de tempo.
Ousga
dv
ry =Qn- Quue

E facil de ver que o balanco é consistente: todas as parcelas tém unidades de n/hr.
Temos agora duas situagtes possiveis. Primeiro, se os caudais de entrada e saida
forem iguais (Qout = Qin):

ctl:l_\t/:Qi” - Q=0 P V =constante

e aequacao de balanco a A fica simplesmente:

dC
V—ut =C Q -C
dt |nQ|n

out ~<out *

ou, substituindo ja Qout por Qin:
— Qin

dCOUt + & Cout -
adt V \Y/

C,.

Esta EDO pode ser facilmente resolvida por separacéo de variaveis, dando entéo:

Qu,
c:out :Cin - Ce v '

e apos aplicacdo da condicdo inicia:
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an
_t * %
Cou =Cin - (Crn- Co Y
Se os caudais de entrada e saida forem diferentes Qn ¥ Qout), Mas constantes ao
longo do tempo, entdo € ébvio que o volume de liquido ndo sera constante. Temos entéo que

resolver a equacdo de balanco volumico:

av.

dt Qm Qout P V(t) (Qin - Qout)t +V0

em que Vo € 0 volume no ingtante t = 0. Agora a equacéo de balango a A fica:

d(VCyy) AC v

out) — C U vV—24+C —=C.0O0 -C

dt len othout dt out dt QO othout
" dCou
U VTt C:out (Qin - Qout) :CinQin - Cothout
- dC
U V_Out+ Cothin :CinQin
dt

0 L Qe c,)

dt \Y

N&o nos podemos esquecer que V é funcdo de t! Substituindo o resultado anteriormente

obtido ficamos com:;

dC., Q
o= = Cin - c:out :
dt (Qin - Qout)t +VO ( )

Esta EDO é de variavels separaveis.

dCout — Qin dt
Cin - Cout (Qin - Qout)t +VO

O resultado, ja apos aplicacdo da condicdo inicia, €

an QOU'[) +V o an Qout
ﬂ

=C, CC°

out

C

out

" Esboce graficamente o aspecto da curva de variacéo de Co COM 0 tempo.
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Sumaério da Secc¢éo 3
» Exenplos de problemas fisicos podem ser descritos por EDOs de primeira ordem:
» Decaimento radioactivo
* 22Lel deNewton

» Baangos materiais
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