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Secção 3. Aplicações das equações diferenciais de 
primeira ordem 
(Farlow: Sec. 2.3 a 2.6) 
 

Chegou a altura de ilustrar a utilidade prática das equações diferenciais de primeira 

ordem. Vamos ver que alguns problemas físicos podem ser descritos por EDOs deste tipo.  

Decaímento radioactivo 
A proporção carbono-14/carbono-12 presente na matéria orgânica viva é constante. 

No entanto, na matéria orgânica morta a quantidade de 14C diminui com o tempo, a uma 

taxa proporcional à quantidade existente. Se designarmos essa quantidade por Q, teremos 

então que a variação de Q por unidade de tempo é proporcional a Q: 

kQ
t

Q
−=

∆
∆

, 

em que k é uma constante de proporcionalidade. O sinal negativo é necessário por forma a 

garantir que Q decresce como tempo. Será mais correcto falar em termos de variação 

instantânea: 

kQ
dt
dQ

−=
. 

Esta EDO resolve-se facilmente por separação de variáveis: 

ktCeQCktQkdt
Q
dQ −=⇒+−=⇒−= ln . 

Sabendo que no início 0)0( QtQ == , então: 

kteQQ −= 0 . 

Esta resultado constitui a base do processo de datação por carbono-14. 

 

 2ª Lei de Newton 
 O enunciado da 2ª Lei de Newton diz-nos que o produto da massa pela aceleração de 

um corpo é igual ao somatório das forças a que está sujeito: 

∑=
i

iFma . 

Para um corpo em queda livre teremos assim: 
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kvmg
dt
dv

m −= , 

em que v é a velocidade do corpo, k o coeficiente de atrito e g a aceleração da gravidade. 

Rearranjando a equação, obtemos: 

gv
m
k

dt
dv

=+ , 

ou seja, uma EDO linear de 1ª ordem que pode ser resolvida por separação de variáveis†. A 

solução geral é: 

m
kt

Ce
k

mg
v

−
+=  

 
Um pára-quedista, pesando 70 Kg, salta de um avião e abre o pára-quedas passados 10 s.  

Antes da abertura do pára-quedas, o seu coeficiente de atrito é kspq = 5 Kg s-1, depois é kcpq 

= 100 Kg s-1. 

a) Qual a velocidade do pára-quedista no instante 

em que se abre o pára-quedas? 

 

Já vimos anteriormente qual é a equação 

que descreve a queda livre, bem como a sua 

solução: 

 gv
m

k

dt
dv spq =+ m

tk

spq

spq

Ce
k
mg

v
−

+=⇒ . 

A constante de integração é determinada a partir da 

condição inicial: 

 
spqk

mg
Ctv −=⇒== 0)0( . 

A solução particular vem então: 

                                                 
 
 
†  Esta EDO também pode ser resolvida pelo método do factor integrante (porquê)? Demonstre que desta 
forma se obtém o mesmo resultado. 

Exemplo 

x = 0 
t = 0 
v = 0 

x= x1 
t = 10  
v = v1 

x = x2 
t = t2 
v = v2 
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Ao fim de 10 segundos, a velocidade alcançada pelo pára-quedista é: 

1
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b) Qual a distância percorrida em queda livre? 

Já obtivemos na alínea anterior a forma como a velocidade do pára-quedista varia 

com o tempo, durante a queda livre. Sabemos também que a velocidade é a derivada da 

distância percorrida em ordem ao tempo. Então: 

Cdte
k
mg

Cdtvx
dt
dx

v m
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Ou seja: 
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Aplicando a condição inicial: 

2

2

0)0(
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E a solução particular vem: 






















−+=

−
1m

tk

spqspq

spq

e
k
m

t
k
mg

x . 

Passados os tais 10 segundos, a distância percorrida foi: 

mexst 3921
5
7

10
5
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Esperemos que o nosso homem se tenha atirado do avião quando este se encontrava a uma 

altura superior a 392 m, de contrário ter-se-á estatelado no chão antes de abrir o pára-

quedas… 

c) Qual a velocidade mínima que o pára-quedista poderá atingir, após a abertura do pára-

quedas?  
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 Após a abertura do pára-quedas a velocidade começa a decrescer, devido ao maior 

coeficiente de atrito, até que é eventualmente atingido um equilíbrio entre a força da 

gravidade e a força de atrito. A partir desse momento a velocidade permanece constante (é a 

chamada velocidade limite). A evolução da velocidade após a abertura do pára-quedas é 

mais uma vez dada pela lei de Newton: 

gv
m

k

dt
dv cpq =+ , 

e a sua solução é: 

m

tk

cpq

cpq

Ce
k
mg

v
−

+= . 

Para um tempo suficientemente longo (t ?  8 ) atinge-se a velocidade limite: 

)(limmin tvv
t ∞→

= 186.6
100

8.970 −=
×

== ms
k
mg

cpq

. 

É interessante notar que poderíamos chegar a este resultado sem ter que resolver a equação 

diferencial. Realmente, após ser atingida a velocidade limite, esta permanece constante ao 

longo do tempo, ou seja, 0=
dt
dv

 a partir desse instante. Da equação diferencial acima: 

v
m

k
g

dt
dv

g
k
mg

m

k

dt
dv cpq

cpq

cpq −=⇔=+ , 

logo: 

cpq

cpq

k
mg

vv
m

k
g

dt
dv

=⇔=−⇒= 00
, 

que é o mesmo resultado que anteriormente. 

Esta solução, que corresponde ao valor constante que a variável dependente atinge 

para um tempo teoricamente infinito, é chamada solução de estado estacionário. 

 

Equações de balanço 
Um tipo de problema muito comum em Engenharia Química consiste em efectuar 

um balanço mássico, volúmico ou energético a um determinado sistema aberto (um reactor 

químico, por exemplo). Vamos aqui ver um exemplo simples de como enunciar este 

problema em termos de equações diferenciais. 

solução de 
estado 
estacionário 
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Antes de mais, convém esclarecer em que é que consiste um “balanço”. Em termos 

simples, uma equação de balanço a uma determinada grandeza (volume de líquido num 

tanque, massa de um reagente num reactor, sacos de batatas numa mercearia...) é escrita na 

forma: 

Acumulação = Entradas – Saídas. 

As “entradas” e “saídas” designam a taxa de entrada ou saída da grandeza em causa no 

sistema. Por exemplo: o Sr. Manuel constatou que entram 5 sacos de batatas por dia na sua 

mercearia (vindos do fornecedor) e saem 3 sacos de batatas por dia (vendidos aos clientes). 

A “acumulação” designa a taxa de variação com o tempo da grandeza em causa. Por 

exemplo: O Sr. Manuel concluiu que se acumulam 2 sacos de batatas por dia na mercearia. 

Se a acumulação for negativa, tal indica uma diminuição da quantidade balanceada com o 

tempo, passando-se o oposto se a acumulação for positiva. 

  

 
 

Vamos considerar um problema de mistura num tanque bem agitado‡ como o 

representado na figura acima. Pretendemos saber como é que a concentração do soluto A no 

tanque varia ao longo do tempo.  

Estão definidas as seguintes variáveis de processo: 

• Caudal total de entrada (constante) = Qin (m3/hr) 

• Concentração de entrada do componente A (constante) = Cin (g/m3) 

                                                 
‡ Dizemos que um tanque é “bem agitado” quando a concentração de soluto(s) no seu interior é uniforme em 
todos os pontos do meio líquido. 

 

Qin Cin  

Qout Cout 

Cout 

V 

Equação de 
balanço 

Exemplo 
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• Caudal total de saída (constante) = Qout (m3/hr) 

• Concentração de saída do componente A = Cout (g/m3) 

• Concentração no tanque do componente A = Cout (g/m3)§ 

• Volume de líquido no tanque = V (m3) 

 

É conhecida a seguinte condição inicial: 0
0 ,0 VVCCt outout ==⇒= . 

 Façamos agora o balanço mássico ao componente A: 

Acumulação de A = Entradas de A – Saídas de A. 

Ou seja: 

   Variação da massa de A no tanque por unidade de tempo =  

  = Massa de A que entra por unidade de tempo –  

   – Massa de A que sai por unidade de tempo. 

Como podemos reescrever esta equação em termos mais “matemáticos”? A massa de A no 

tanque é dada por VCout, logo, a sua variação com o tempo será dada por 
( )

t
VCout

∆
∆

 ou, em 

termos de variação instantânea: 
( )

dt
VCd out . Por outro lado, a massa de A que entra por 

unidade de tempo é dada por CinQin, enquanto que a massa de A que sai por unidade de 

tempo é dada por CoutQout. Logo, a equação de balanço fica: 

( )
outoutinin

out QCQC
dt

VCd
−=

. 

Esta é uma EDO de primeira ordem, em que a variável dependente é a concentração de A no 

tanque, Cout,. Após escrever uma equação de balanço é sempre boa ideia verificar a 

consistência das unidades. Ou seja, verificar se todas as parcelas da equação têm as mesmas 

unidades. Se tal não se verificar, algo está errado no nosso balanço! Vamos ver então se a 

equação anterior é consistente: 

   
( )

dt
VCd out  tem unidades de: 

hr
g

hr
m
g

m

tempo
ãoconcentraçvolume

=
×

=
× 3

3

, 

   ininQC  e outoutQC  têm unidades de: 
hr
g

hr
m

m
g

caudalãoconcentraç =×=×
3

3
. 

                                                 
§  Porque razão dizemos que a concentração de A no tanque é igual à concentração na corrente de saída, Cout? 
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Todas as parcelas têm realmente unidades de g/hr, indicando que o balanço é consistente. 

 Prossigamos então: temos que resolver a EDO que define o balanço ao soluto A. 

Antes disso, porém, devemos ter em atenção que o volume de líquido no tanque, V,  se 

encontra dentro da derivada. Para podermos resolver a equação diferencial necessitamos de 

saber como é que V varia com o tempo! Para tal, temos que efectuar um balanço volúmico 

ao tanque: 

Variação de volume de líquido A no tanque por unidade de tempo =  

  = Volume de líquido que entra por unidade de tempo –  

   – Volume de líquido que sai por unidade de tempo.  

Ou seja: 

outin QQ
dt
dV

−=  

É fácil de ver que o balanço é consistente: todas as parcelas têm unidades de m3/hr. 

 Temos agora duas situações possíveis. Primeiro, se os caudais de entrada e saída 

forem iguais (Qout = Qin): 

constante0 =⇒=−= VQQ
dt
dV

outin , 

e a equação de balanço a A fica simplesmente: 

outoutinin
out QCQC

dt
dC

V −= . 

ou, substituindo já Qout por Qin : 

in
in

out
inout C

V
Q

C
V
Q

dt
dC

=+ . 

Esta EDO pode ser facilmente resolvida por separação de variáveis, dando então: 

t
V

Q

inout

in

CeCC
−

−= , 

e após aplicação da condição inicial: 
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( ) t
V

Q

outininout

in

eCCCC
−

−−= 0 .** 

 Se os caudais de entrada e saída forem diferentes (Qin ≠ Qout), mas constantes ao 

longo do tempo, então é óbvio que o volume de líquido não será constante. Temos então que 

resolver a equação de balanço volúmico: 

outin QQ
dt
dV

−= ( ) 0)( VtQQtV outin +−=⇒  

em que V0 é o volume no instante t = 0. Agora a equação de balanço a A fica: 

( )
outoutininout

out
outoutinin

out QCQC
dt

dV
C

dt
dC

VQCQC
dt

VCd
−=+⇔−=  

outoutininoutinout
out QCQCQQC

dt
dC

V −=−+⇔ )(  

inininout
out QCQC

dt
dC

V =+⇔  

( )outin
inout CC

V
Q

dt
dC

−=⇔  

Não nos podemos esquecer que V é função de t! Substituindo o resultado anteriormente 

obtido ficamos com: 

( ) ( )outin
outin

inout CC
VtQQ

Q
dt

dC
−

+−
=

0

. 

Esta EDO é de variáveis separáveis: 

( ) dt
VtQQ

Q
CC

dC

outin

in

outin

out

0+−
=

−
. 

O resultado, já após aplicação da condição inicial, é: 

( ) ( ) ou tin

in

QQ
Q

outin
outininout V

VtQQ
CCCC

−
−








 +−
−−=

0

00 . 

 

 

 

 

                                                 
**  Esboce graficamente o aspecto da curva de variação de Cout com o tempo. 
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Sumário da Secção 3 

• Exemplos de problemas físicos podem ser descritos por EDOs de primeira ordem: 

• Decaímento radioactivo 

• 2ª Lei de Newton 

• Balanços materiais 

 

 

 


