This shows you the differences between two versions of the page.
|
omtg [2014/07/07 16:25] clodoveu |
omtg [2018/07/04 15:08] (current) clodoveu |
||
|---|---|---|---|
| Line 5: | Line 5: | ||
| OMT-G is based on three main concepts: //classes//, //relationships//, and //spatial integrity constraints//. Classes and relationships define the basic primitives that are used to create application static schemas. The spatial integrity constraints ensure the necessary conditions to keep the database always consistent. Two types of classes are proposed by the OMT-G model: //georeferenced// and //conventional//, as shown in Figure 1. | OMT-G is based on three main concepts: //classes//, //relationships//, and //spatial integrity constraints//. Classes and relationships define the basic primitives that are used to create application static schemas. The spatial integrity constraints ensure the necessary conditions to keep the database always consistent. Two types of classes are proposed by the OMT-G model: //georeferenced// and //conventional//, as shown in Figure 1. | ||
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/classes.png||OMT-G classes}} | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/classes.png | OMT-G classes}} | |
| - | Figure 1 - OMT-G classes, simplified notation | + | | **Figure 1 - OMT-G classes, simplified notation** | |
| - | Conventional classes behave as UML classes and have no geographical properties. Georeferenced classes include a geographical representation alternative, which specializes in two types of representations: discrete, associated with real world elements (//{geo-objects}//), or continuously distributed over the space (//{geo-fields}//). Geo-objects are represented with points, lines, polygons or network elements (nodes, unidirectional and bidirectional arcs). Geo-fields correspond to variables such as soil type, relief and temperature, often seen as a surface, and can be represented by isolines, tessellation, planar subdivision, sampling or triangular irregular network (TIN). Figures 2 and 3 show, respectively, examples of geo-object and geo-field classes. | + | Conventional classes behave as UML classes and have no geographical properties. Georeferenced classes include a geographical representation alternative, which specializes in two types of representations: discrete, associated with real world elements (//geo-objects//), or continuously distributed over the space (//geo-fields//). Geo-objects are represented with points, lines, polygons or network elements (nodes, unidirectional and bidirectional arcs). Geo-fields correspond to variables such as soil type, relief and temperature, often seen as a surface, and can be represented by isolines, tessellation, planar subdivision, sampling or triangular irregular network (TIN). Figures 2 and 3 show, respectively, examples of geo-object and geo-field classes. |
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/geo-objects.png||OMT-G geo-object classes}} | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/geo-objects.png |OMT-G geo-object classes}} | |
| - | Figure 2 - OMT-G geo-object classes | + | | **Figure 2 - OMT-G geo-object classes** | |
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/geo-fields.png||OMT-G geo-field classes}} | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/geo-fields.png |OMT-G geo-field classes}} | |
| - | Figure 3 - OMT-G geo-field classes | + | | **Figure 3 - OMT-G geo-field classes** | |
| Relationships can be //conventional//, i.e., simple associations, such as in UML relationships, or //georeferenced//. The latter include topological relations (e.g. touch, in, cross, overlap, and disjoint), arc-node network relations and spatial aggregations (i.e. “whole-part” aggregations). Generalizations and specializations can be total/partial or disjoint/overlapping and require that the participating classes have the same type of representation. The conceptual generalization allows modeling objects with multiple geographic representations, which may vary according to the scale or to the geometric shape. Figure 4 shows the OMT-G notations for relationships. | Relationships can be //conventional//, i.e., simple associations, such as in UML relationships, or //georeferenced//. The latter include topological relations (e.g. touch, in, cross, overlap, and disjoint), arc-node network relations and spatial aggregations (i.e. “whole-part” aggregations). Generalizations and specializations can be total/partial or disjoint/overlapping and require that the participating classes have the same type of representation. The conceptual generalization allows modeling objects with multiple geographic representations, which may vary according to the scale or to the geometric shape. Figure 4 shows the OMT-G notations for relationships. | ||
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/simple-association.png||Simple association}} | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/simple-association.png |Simple association}} | |
| - | + | | //(a) Simple association// | | |
| - | (a) Simple association | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/spatial.png |Spatial relationship}} | |
| - | + | | //(b) Spatial relationship// | | |
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/spatial.png||Spatial relationship}} | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/arc-node.png |Arc-node network relationship}} | |
| - | + | | //<nowiki>(c)</nowiki> Arc-node network relationship// | | |
| - | (b) Spatial relationship | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/spatial-aggregation.png |Spatial aggregation}} | |
| - | + | | //(d) Spatial aggregation// | | |
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/arc-node.png||Arc-node network relationship}} | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/generalization.png | Generalization/specialization}} | |
| - | + | | //(e) Generalization / specialization// | | |
| - | (c) Arc-node network relationship | + | | {{ http://www.dcc.ufmg.br/~clodoveu/files/OMT-G/conceptual.png |Conceptual generalization}} | |
| - | + | | //(f) Conceptual generalization// | | |
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/spatial-aggregation.png||Spatial aggregation}} | + | | **Figure 4 - OMT-G relationships** | |
| - | + | ||
| - | (d) Spatial aggregation | + | |
| - | + | ||
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/generalization.png||Generalization/specialization}} | + | |
| - | + | ||
| - | (e) Generalization / specialization | + | |
| - | + | ||
| - | {{http://www.dcc.ufmg.br/~clodoveu/files/Images/OMT-G/conceptual.png||Conceptual generalization}} | + | |
| - | + | ||
| - | (f) Conceptual generalization | + | |
| - | + | ||
| - | Figure 4 - OMT-G relationships | + | |
| //OMT-G é um modelo de dados dotado de recursos para o projeto de bancos de dados e aplicações geográficas. O OMT-G parte das primitivas definidas para o diagrama de | //OMT-G é um modelo de dados dotado de recursos para o projeto de bancos de dados e aplicações geográficas. O OMT-G parte das primitivas definidas para o diagrama de | ||
| Line 86: | Line 74: | ||
| :!: Borges, K. A. V., Davis Jr., C. A., Laender, A. H. F. Integrity Constraints in Spatial Databases. In: Doorn, J. H., Rivero, L. C. (Org.) **//Database Integrity: Challenges and Solutions//**. Hershey (PA), Estados Unidos: Idea Group Publishing, 2002, 144-171. [[http://www.igi-global.com/books/details.asp?id=284|IGI]] [[http://www.amazon.com/Database-Integrity-Challenges-Jorge-Doorn/dp/1930708386|Amazon]] | :!: Borges, K. A. V., Davis Jr., C. A., Laender, A. H. F. Integrity Constraints in Spatial Databases. In: Doorn, J. H., Rivero, L. C. (Org.) **//Database Integrity: Challenges and Solutions//**. Hershey (PA), Estados Unidos: Idea Group Publishing, 2002, 144-171. [[http://www.igi-global.com/books/details.asp?id=284|IGI]] [[http://www.amazon.com/Database-Integrity-Challenges-Jorge-Doorn/dp/1930708386|Amazon]] | ||
| + | |||
| + | Lizardo, L. E. O. ; Davis Jr., C. A. . A PostGIS extension to support advanced spatial data types and integrity constraints. In: 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017), 2017, Redondo Beach, California. Proceedings of ACM SIGSPATIAL 2017, 2017. [[https://dl.acm.org/citation.cfm?id=3140020|ACM Digital Library]] | ||
| + | |||
| + | Lizardo, L. E. O. ; DAVIS JUNIOR, C. A. . OMT-G Designer: a Web tool for geographic database modeling. In: 8th International Workshop on Semantic and Conceptual Issues in GIS (SeCoGIS 2014), 2014, Atlanta, Georgia, USA. Lecture Notes in Computer Science, 2014. v. 8823. p. 228-233. [[https://link.springer.com/chapter/10.1007/978-3-319-12256-4_24|Springer]] | ||
| Davis Jr., C. A. Múltiplas Representações em Bancos de Dados Geográficos. Tese de Doutorado, Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, 2000. [[http://www.dcc.ufmg.br/pos/cursos/defesas/460D.PDF|PDF]] | Davis Jr., C. A. Múltiplas Representações em Bancos de Dados Geográficos. Tese de Doutorado, Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, 2000. [[http://www.dcc.ufmg.br/pos/cursos/defesas/460D.PDF|PDF]] | ||