
J. Parallel Distrib. Comput. 70 (2010) 344–362

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Joint admission control and resource allocation in virtualized servers

Jussara Almeida a, Virgílio Almeida a, Danilo Ardagna b,∗, Ítalo Cunha a, Chiara Francalanci b,
Marco Trubian c
a Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-010, Brazil
b Politecnico di Milano, Dipartimento di Elettronica e Informazione, Via Ponzio 34/5, 20133 Milano, Italy
c Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Via Comelico 39, 20135, Milan, Italy

a r t i c l e i n f o

Article history:
Received 31 December 2008
Received in revised form
29 June 2009
Accepted 26 August 2009
Available online 6 September 2009

Keywords:
Resource allocation
Admission control
Quality of service
Optimization

a b s t r a c t

In service oriented architectures, Quality of Service (QoS) is a key issue. Service requestors evaluate QoS at
run time to address their service invocation to themost suitable provider. Thus, QoS has a direct impact on
the providers’ revenues. However, QoS requirements are difficult to satisfy because of the high variability
of Internet workloads.
This paper presents a self-managing technique that jointly addresses the resource allocation and

admission control optimization problems in virtualized servers. Resource allocation and admission
control represent key components of an autonomic infrastructure and are responsible for the fulfillment
of service level agreements. Our solution is designed taking into account the provider’s revenues, the
cost of resource utilization, and customers’ QoS requirements, specified in terms of the response time of
individual requests.
The effectiveness of our joint resource allocation and admission control solution, compared to top

performing state-of-the-art techniques, is evaluated using synthetic as well as realistic workloads, for
a number of different scenarios of interest. Results show that our solution can satisfy QoS constraints
while still yielding a significant gain in terms of profits for the provider, especially under high workload
conditions, if compared to the alternative methods. Moreover, it is robust to service time variance,
resource usage cost, and workload mispredictions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the Service-Oriented Architecture (SOA), Quality of Service
(QoS) requirements can be difficult to satisfy, especially due
to the high variability of Internet workloads. The workload of
Internet applications can vary by orders of magnitude within the
same business day [10]. Such variations cannot be accommodated
with traditional capacity planning and allocation practices, but
require autonomic computing self-managing techniques [29],
which dynamically allocate resources among different services on
the basis of short-term demand estimates.
This dynamic allocation of computing capacity is enabled by

the virtualization of resources [16]. A virtualization mechanism
provides service differentiation and performance isolation for
multiple Web services sharing the same physical resources
(i.e., CPUs, disks, communication networks). Service differentiation

∗ Corresponding author.
E-mail addresses: jussara@dcc.ufmg.br (J. Almeida), virgilio@dcc.ufmg.br

(V. Almeida), ardagna@elet.polimi.it (D. Ardagna), cunha@dcc.ufmg.br (Í. Cunha),
francala@elet.polimi.it (C. Francalanci), trubian@dsi.unimi.it (M. Trubian).

is obtained by partitioning physical resources into multiple virtual
resources, thus creating independent virtual machines (VMs).
Each VM is dedicated to a single Web service and is allocated
a varying fraction of capacity depending on the Web service’s
QoS requirements and current workload. This also prevents the
contention for resources among different Web services, thus
providing performance isolation.
Virtualized environments are managed by autonomic con-

trollers which usually include: (i) a monitor, which measures
the workload and the performance metrics of each Web service,
(ii) a predictor, which forecasts future system workload conditions
based on past monitoring data, (iii) a resource allocator, which
calculates the capacity required by different Web services from
incoming workload predictions, and (iv) an admission controller,
which decides whether to accept or reject service requests accord-
ing to the server’s ability to guarantee QoS requirements given its
current workload and capacity.
This paper focuses on the resource allocation and admission

control problems in a virtualized platform hosting a number
of Web applications. Resource allocation and admission control
represent the components of a virtualized environment that
are responsible for Service Level Agreement (SLA) fulfillment.
Decisions on resource allocation and admission control have clear

0743-7315/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2009.08.009

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:jussara@dcc.ufmg.br
mailto:virgilio@dcc.ufmg.br
mailto:ardagna@elet.polimi.it
mailto:cunha@dcc.ufmg.br
mailto:francala@elet.polimi.it
mailto:trubian@dsi.unimi.it
http://dx.doi.org/10.1016/j.jpdc.2009.08.009

J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362 345
mutual interrelations. Different admission policies lead to different
workload patterns and, vice versa, different resource allocation
strategies lead to varying SLA violation patterns depending on
the workload. Despite these interrelations, previous literature
has considered each decision problem in isolation [43,12,36].
The joint admission control and resource allocation problem is
complex. Furthermore, the solution has to be evaluated according
to the short-term planning horizon of autonomic computing,
i.e., decisions must be made within strict time constraints (in the
range of 5–10 min [4,40,7]). This time issue represents a major
challenge and the main reason as to why resource allocation
and admission control have been addressed as separate decision
problems [43,12,36].
The main contribution of this paper is a time efficient optimiza-

tion model that considers resource allocation and admission con-
trol as a joint decision problem. The model includes:

• the provider’s revenue;
• the provider’s cost, that is, the cost of utilization of servers
resources;
• customers’ QoS requirements in terms of response time of
individual requests.

The optimization objective is to maximize the provider’s
revenue, while satisfying customers’ QoS requirements and min-
imizing the cost of resource utilization. Traditional resource man-
agement approaches (e.g., see [29,43]) focus on the optimization
of performancemeasured by average response time and system uti-
lization. In contrast, this paper’s optimization model considers the
tail distribution of request response times, thus providing guaran-
tees on the response time observed by each request.
We solve the optimization problem by means of an analytical

queuing-based solution of a performance model. Analytical
solutions allow a time efficient evaluation of performance metrics
and, thus, reduce computation time. The paper proposes an
efficient algorithm to determine the global optimum of the
optimization problem, which can solve large problem size
instances within very strict time constraints, suitable for on-line
implementation.
The effectiveness of the resource allocation and admission

control policies identified by the optimization model is tested
through simulation in a number of different scenarios of interest.
Results show that resource allocation and admission control
policies satisfy QoS constraints. Furthermore, compared to state-
of-the-art resourcemanagement techniques, our joint solution can
yield a significant profit increase for the provider.
The rest of this paper is organized as follows. Section 2

discusses previous literature. Section 3 presents our resource
management approach and discusses the characteristics of the
reference system infrastructure considered in this paper. The
performancemodel designed to evaluate QoS and the optimization
techniques applied to solve the joint resource allocation and
admission control problem are discussed in Sections 4 and 5,
respectively. Section 6demonstrates the economic efficiency of our
solutions by presenting simulation results. Conclusions are finally
drawn in Section 7, along with a discussion on possible directions
for future work.

2. Related work

Several research contributions have previously addressed the
issue of SLA management in cluster-based service centers. In gen-
eral terms, they consider four main problems that must be ad-
dressed to enforce system management policies: (1) admission
control, (2) resource allocation, (3) load balancing, and (4) power
consumption optimization. Existingmechanisms and solutions fall
into one of four main categories, namely, (1) the control theory-
based feedback loop, (2) machine learning adaptive techniques,
(3) reputation-based approaches, and (4) utility-based optimiza-
tion techniques. We summarize the main results in each category,
emphasizing existing utility-based optimization solutions, which
more closely relate to our approach.
The main advantage of the control theory-based feedback

loop is that it guarantees system stability. Furthermore, upon
a change in workload, these mechanisms can accurately model
transient behavior and can adjust the system’s configuration
within a constant time, which can be fixed a priori. The adoption
of control-oriented solutions is quite recent and their scalability
has not yet been demonstrated. Kamra et al. [18] have proposed
a non-invasive admission control system based on a control-
theoretic approach that prevents overload and enforces absolute
client response times in multi-tiered Web sites. This approach
is architecture independent, as it works with any server model,
process, thread, or event based. Other research contributions [1]
use feedback control to limit the utilization of bottleneck resources
by means of admission control or resource allocation. While
most control theoretic approaches adopt system identification
techniques to build linear time invariant models and then apply
classical proportional integral differential control, authors in [32]
have developed linear parameter varying models for performance
control by adopting server’s CPU dynamic voltage and frequency
scaling (DVFS) as control variable.
Machine learning adaptive techniques base their learning

sessions on live systems, without a need for an analytical model
of the system. A recent research contribution [41] has proposed
a resource allocation technique that determines the assignment
of physical servers to applications that maximizes the fulfillment
of SLAs. Kephart et al. [19] have applied machine learning to
coordinate multiple autonomic managers with different goals. In
particular, their work has integrated an autonomous performance
manager with a power manager in order to satisfy performance
constraints while minimizing energy consumption costs by
exploiting server DVFS. A recognized advantage of machine
learning techniques is that they accurately capture system
behavior without any explicit performance or traffic model and
with little built-in system-specific knowledge. However, training
sessions tend to extend over several hours [19]. Furthermore, the
proposed techniques usually consider a limited set of managed
applications and apply separate actuation mechanisms.
Reputation-based approaches have been proposed mainly in

the grid and Peer-to-Peer (P2P) research communities, with the
goal of developing distributed admission control, load balancing
and resource selection policies. In [38], the authors have addressed
the inherent unreliability and instability of nodes in large grid
and P2P infrastructures. Several reputation-based algorithms,
which update the reputation metric by evaluating the run-time
reliability of participating nodes, have been developed with the
goal of maximizing system throughput and task completion
probability. A reputation model specific for the resource selection
in economic grids has been discussed in [23]. Authors in [37] have
proposed distributed reputation-based policies specific for P2P
systems, in which peers receive incentives to share their resources
(i.e., transmission capacity) by uploading content to serve other
peers’ needs, instead of behaving selfishly. These policies enforce
peer collaboration, thus maximizing the global transmission rate.
The distributed, and thus scalable, architecture ofmost reputation-
based mechanisms constitutes their main advantage with respect
to other centralized solutions. However, the reputationmodels are
often very application-specific, and, thus, cannot be generalized to
other domains. Furthermore, if participating nodes cannot update
reputation locally, an additional infrastructure for reputation
notification has to be introduced [17].
Finally, utility-based approaches have been introduced to

optimize the degree of users’ satisfaction by expressing their goals

346 J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362
in terms of user-level performance metrics. Typically, the system
ismodeled bymeans of a performancemodel embeddedwithin an
optimization framework. Optimization can produce global optimal
solutions or sub-optima by means of heuristics, depending on the
complexity of the optimizationmodel, thus providing scalability to
reasonably large size problem instances.
In most previously proposed utility-based approaches, opti-

mization is typically applied to each of the four actuators in iso-
lation. With respect to admission control, most existing solutions
[12,44] make session-based dynamic decisions, aiming at prevent-
ing system overload and obtaining service differentiation. Admis-
sion control is considered effective if the admitted requests are
served according to their SLA contracts. Utility is expressed in
terms of the number of served sessions. Resource allocation, in
turn, is typically viewed as a separate optimization activity that op-
erates under the assumption that servers are protected from over-
load, and that SLAs can be satisfied with an efficient allocation of
computing resources across different classes of requests. A request
class is defined as a subset of requests that is homogeneous with
respect to the specific set of applications required to support their
executions, their SLA contracts (which specify performance re-
quirements, price, penalties, etc.), and workload profiles (i.e., re-
source demands).
Other studies focus on service differentiation in server farms by

physically partitioning the farm into separate clusters, each serving
one of the request classes (e.g., see [5,52]). For example, the work
in [44] aims at maximizing the revenues from SLA of multi-class
systems where each class of request is assigned to a number of
dedicated homogeneous servers in order to provide performance
guarantees. The number of servers is evaluated by modeling each
physical server by means of a G/G/1 queue, although the solution
is determined by a very simple greedy approach. In contrast,
new technology trends advocate the sharing of physical resources
among multiple request classes [7,29,40]. Pacifici et al. [29,43]
have proposed statistical multiplexing techniques which allow the
instantaneous sharing of unused resource capacities, and allocate
a varying number of threads to each request class. A fundamental
difference between Pacifici’s as well as a number of other related
strategies [45,11] and this paper’s approach is that they express
utility in terms of average response time. In sharp contrast, we
express utility in terms of the probability distribution of response
times. Therefore, our focus is on the performance observed by
individual user requests, instead of average performance, which
may not be very meaningful for very heterogeneous and highly
variable workloads. Moreover, this paper’s approach exploits the
virtualization mechanism and, hence, we manipulate the fraction
of capacity to be devoted to each virtual machine, instead of the
number of threads, in order to adjust capacity.
The authors in [8] have observed that power consumption

represents a serious concern in the design and operation of large
service centers. Power consumption is known for involving high
expenses related to electricity, in addition to the fixed costs
related to the design of cooling systems. To the best of our
knowledge, [50] represents the first research contribution that
tackles energy consumption and SLA performance management
as a joint optimization problem. This paper and other early
techniques for power management turn unused servers off during
periods of light load. More recent approaches [32,19,22] have also
considered adjusting the frequency scaling of servers as ameans to
reduce consumption. In this work, we include the cost of resource
usage in the objective function of our optimization model, and
provide the fraction of unused capacity as an output to drive power
consumption decisions.
Authors in [33] have presented the result of a server consolida-

tion project on blade servers based on a power budget mechanism.
Processors’ frequencies are throttled in order to achieve CPU uti-
lization and energy saving goals. Nevertheless, the approach can-
not provide, a priori, any SLA guarantee. In [39], a virtualization
framework able to support heterogeneous workloads (batch and
web interactive system) is presented, but energy savingpolicies are
not considered. Authors in [53] have presented a multi-layer and
multi-time scale solution for the management of virtualized sys-
tems, but they also do not consider the trade-off between perfor-
mance and system costs. Autonomic management is implemented
also in current virtualization products (e.g., VMWare DRS or Virtu-
oso VSched [39]) with the aim of equalizing the use of resources,
instead of determining performance and energy trade-offs.
In [7], we have provided a joint solution for the problem of

VM placement, load balancing and resource allocation of multiple
VMs. Unlike this work, that solution acts at larger time scales
(at least half an hour as opposed to a few minutes), and the
admission control problem has not been considered. On a parallel
effort, we have also proposed an alternative autonomic capacity
management framework for virtualized infrastructures [3,14,15].
The framework consists of an optimization model that embeds an
analytical queuing-based performance model as well as a pricing
model. The performance model, proposed as a proof of concept
in [3], was further extended to multi-tier platforms in [14]. The
framework was also extended to include costs related to energy
consumption (similarly to our approach in this paper) and security
management [15]. Nevertheless, in contrast to our current effort,
that solution focuses only on the resource allocation problem, and,
thus, does not address the admission control problem. This paper
builds greatly on the solution we proposed in [4]. In comparison
with that preliminary work, we here adopt a much more accurate
performance model and provide a deeper experimental analysis.
Our ongoing research on energy management in discussed in [6].
The four categories of existing SLAmanagement approaches are

summarized in Table 1.
Out of the available resource allocation and admission con-

trol mechanisms available in the literature, we selected two tech-
niques, namely, the resource allocation strategy proposed in [36]
and the admission control scheme proposed in [12], to compare
against the joint solution proposed in this paper. These two tech-
niques were chosen because: (1) they are top-performing state-of-
the-art techniques addressing each individual problem, (2) they
are both based on utilization thresholds, and thus can be easily
integrated into a coherent framework, and (3) they allow a com-
parison betweenmodel-based solutions (such as the one here pro-
posed) and utilization-driven techniques.
The workload management strategy proposed in [36] provides

one of the best-performing techniques for resource allocation. De-
signed for an autonomic virtualized service center, it addresses the
issue of choosing per-VM values of resource allocation control pa-
rameters. The strategy aims at keeping resource (i.e., CPU) utiliza-
tion between two thresholds Umin and Umax. Whenever utilization
drops below Umin, CPU allocation is decreased by a pre-defined
value, but it never drops below a minimum allocation. Similarly,
whenever utilization increases above the upper-threshold Umax,
CPU allocation is increased by the same value, limited to a max-
imum allocation. An optimized fast allocation policy is also pro-
posed in [36], inwhich CPU allocation is increased to themaximum
in one step whenever workload is observed to grow rapidly. The
analysis presented in Section 6.2 considers this fast allocation pol-
icy. We note that the policies proposed in [36] allocate resources
for multiple VMs independently, i.e., allocation decisions are made
for each VM separately. Thus, they do not handle the trade-offs and
conflicts that arise when multiple workloads (i.e., VMs) compete
for resources in a shared infrastructure.
We also consider the admission control mechanism proposed

in [12]. Themechanism operates in pre-defined time intervals, and

J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362 347
Table 1
Comparison of alternative categories of SLA management solutions in literature.

Control policy category Research contribution Problems addressed Strengths Weaknesses

Control theory [1,18,32,22] Admission System stability guarantees; Scalability is yet to be
Control; Accurate transient demonstrated;

feedback loop Resource behavior modeling;
Allocation; Effective on short term
Power time scales (s);
Optimization; Upper bound on the effects

of configuration changes;

Machine learning [41,19] Resource Acquire system model Training sessions
Allocation; from running applications; extend over several hours;
Power Limited set of
Optimization; managed applications;

Separate actuation
mechanisms;

Reputation based [38,17,37,23] Admission Distributed Application specific;
Control; Architecture; May require
Load Balancing; Scalability; reputation notification
Resource infrastructure;
Allocation;

Utility-based optimization [52,12,5,44] Admission Global optimal Performance parameters
[50,29,45,4] Control; (or sub-optima) solutions; estimated at run-time;
[3,7,40,11] Load Balancing; Scalability; Effective on medium
[39,53,14,15] Resource term time scales

Allocation; (several minutes);
Power
Optimization;
is based on a target maximum CPU utilization and on predictions
of utilization for the next interval. If the predicted utilization
grows above the target maximum, the admission controller rejects
all new sessions for the next interval, favoring the service of
requests from already admitted sessions. The prediction of future
CPU utilization is based on the moving average of utilization
in the last n intervals. The paper also proposes a self-tunable
hybrid mechanism that dynamically adjusts the moving average
as a function of the number of aborted requests and refused
connections. The efficiency of the mechanism is further improved
by considering a prediction of the number of sessions that
the server is able to process. In Section 6.2, we consider this
final predictive admission control mechanism. However, since our
solution is designed for workloads composed of requests, instead
of sessions, the mechanism is applied to request admission control.
Finally, we note that both techniques presented in [12,36]

make decisions based on target utilizations, which, in general,
cannot provide any QoS guarantee. In contrast, our joint solution
makes resource allocation and admission control decisions based
on the performance (i.e., per-request response time) achieved by
applications.

3. Autonomic resource management

This section provides an overview of our autonomic computing
approach for the resource management of virtualized Web
service infrastructures. Section 3.1 discusses the target virtualized
environment. The main components of our autonomic resource
management framework are introduced in Section 3.2, whereas
themain assumptions of the design of our joint resource allocation
policies are presented in Section 3.3.

3.1. Target virtualized environment

We assume that the reference service center offers multiple
transactional Web services, and each service represents a dif-
ferent Internet application or a different instance of the same
application. Indeed, multiple Web service instances with different
quality profiles can be offered by the provider tomeet varying cus-
tomer needs. In either case, the hostedWeb services can be hetero-
geneous with respect to resource demands, workload intensities
and QoS requirements. Services and service instances with differ-
ent quality andworkload profiles are categorized into independent
Web service (WS) classes.
An SLA contract, associated with each WS class, is established

between the service provider and its customers. It specifies the
QoS levels the provider must meet while responding to customer
requests for a given service class, as well as the corresponding
pricing scheme. We assume that the provider gains full revenues
from the requests served within a response time threshold
specified in the SLA contracts. Otherwise, revenues are lost.
Fig. 1 shows the architecture of the service center under study.

The system includes a set of heterogeneous servers, each of
which runs a Virtual Machine Monitor (VMM), such as VMWare
or Xen [16]. Each server’s physical resources (i.e., CPU, disks,
communication network) are partitioned among multiple virtual
machines, each running a dedicated Web service application.
Virtualization enables the flexible reduction and expansion of the
resource capacity assigned to each VM (and, thus, to its hosted
WS class). As a first approximation, we assume that, once a
capacity assignment has been performed, each VM is guaranteed
its resources, regardless of the actual load of other VMs. In
other words, we assume that virtualization provides performance
isolation and facilitates service differentiation, preventing the
contention for resources among services (or WS classes).
As in [29,36,43,10], among the server’s many resources, we

consider CPU as representative for the resource allocation problem.
Each VM hosts a single Web service application, and multiple VMs
implementing the same WS class can run in parallel on different
hosts. Under light load conditions, servers can be turned off or put
in a stand-by state andmoved to a free server pool in order to save
energy costs. They can also be moved back into an active state and
re-introduced into the running infrastructure during load peaks.
Our system is based on a hierarchical architecture. At a higher

level, a Layer 1 (L1) controller is responsible for establishing the set
of servers in active state,1 the VM to physical server assignment,

1 Servers that are running and, thus, that are neither in stand-by state nor turned-
off and allocated to the free server pool.

348 J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362
VM1 VM2 VMn

App1
App2 Appn

Operating
System

Operating
System

Operating
System

Fig. 1. Target virtualized environment.
and the load balancing across multiple VMs implementing the
same WS class. At a lower level, Layer 2 (L2) controllers
implement admission control and resource allocation policies. The
L1 controller is centralized, and is hosted on a dedicated server
which acts as a network dispatcher, as in [22]. L2 controllers,
in turn, are installed and run locally at each server. Moreover,
L1 and L2 controllers work on different time scales. Since the
actions taken by the L1 controller, namely, servers switching and
VMs placement, introduce a significant system overhead, they
should be performed about every half an hour. In contrast, the L2
admission control and resource allocation decisions have shorter
time requirements, and can be performed every few minutes.
Overall, an L2 controller is responsible for locally managing, at a
finer grain time scale, the VMs allocated by L1 to its physical server.
In the remainder of this paper, we will focus on the design of the
L2 controllers. The implementation of our L1 controller is described
in [7]. Alternatively, the solutions proposed in [40,22,50] could also
be adopted.

3.2. Autonomic framework

Our L2 controller combines a performance model and an
optimization model, and has the goal of maximizing revenues
from SLAs, while minimizing the total cost associated with the
use of resources, including costs related to hardware, power, air
conditioning, etc. In order to achieve these goals, L2 controllers can
choose to dynamically adjust the fraction of capacity assigned to
each VM and/or to limit the incoming workload by serving only
the subset of requests that maximizes profits, i.e., revenues minus
costs. For example, an L2 controller may choose to reject a fraction
of incoming requests and reduce the capacity of the corresponding
VM, if this choice leads to a cost reduction that is greater than the
revenue losses due to request rejections.
Resource allocation is performed periodically, every 5 to 10

min [29,7], depending on workload profiles. At the end of each
period, on the basis of a prediction of future workloads [9,2], the
performancemodel produces an estimate of the future performance
of each VM, i.e., determines future SLA violations for each WS
class. The optimization model uses these estimates to determine
the fraction of capacity to be assigned to each VM (i.e., resource
allocation) as well as the number of requests effectively served for
each class (i.e., admission control) that maximizes profits.
3.3. Design assumptions

In designing the performance model and the optimization
model of our L2 controller, we made a few assumptions driven by
the goal of meeting a reasonable trade-off between accuracy and
practical solution time.
First, we assume an open request-based workload model

in which WS requests arrive according to a Poisson process,
as observed in several real systems [31,13] and assumed by
most previous solutions [25,47,34]. This assumption greatly
simplifies the model, thus shortening solution time. However,
one might raise the issue of whether it is adequate to certain
e-commerce and enterprise applications, whose workloads are
more accurately described by independent arrivals of user sessions,
that is, sequences of inter-dependent requests [21]. To address this
issue, we rely on recent results from [51], which show that the
performance (i.e., response time) and resource requirements of
session-based systems can be accurately captured by a simplified
model based on the assumption of independent request arrivals,
such as the one proposed here, provided that the distribution of
different request types is the same as in the original session-based
system. As in [51], we assume this distribution can be estimated by
continuously monitoring the system.
Moreover, we assume that each WS request has a service

demand that is exponentially distributed, with different WS
classes possibly exhibiting different service time distributions. This
assumption also helps in simplifying our performance model, thus
reducing solution time. However, it may be too restrictive, thus
hurting accuracy and solution cost-effectiveness in several real
scenarios in which applications observe a much higher variability
in service times. Thus, we also assess, in Section 6.3.1, the impact of
relaxing this assumption by evaluating our solution in scenarios in
which service times follow heavy-tailed distributions with various
degrees of variability.
Finally, we consider the fraction of server capacity assigned

to each VM as a continuous variable, and assume that both
performance and costs associated with WS classes are continuous
and linear. This representation is an idealization of the joint
adoption of VMMs and the DVFS mechanism [22] implemented
in modern servers, which allows the dynamic change of supply
voltage and CPU operating frequency. Other approaches proposed

J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362 349
Table 2
Autonomic framework: parameters and decision variables.

Symbol Description
SLA parameters

ωi Price of class i requests served with the QoS level specified in the SLA.
RSLAi Response time threshold guaranteed for class i requests.

System parameters

N Number of hosted WS classes (and VMs).
vi Maximum utilization planned for VM i (0 ≤ vi < 1).
Di Average service demand of class i requests on a VM to which the full capacity is allocated.
C Cost per time unit associated with the use of total physical capacity.

Input from short-term workload predictor and monitoring

λi Predicted arrival rate of class i requests for the next period.

Decision variables

Xi Throughput of class i requests for the next period.
fi Fraction of server total physical capacity assigned to VM i for the next period.
in the literature [22,19] assume that the server performance
(i.e., request service times) vary linearly with the CPU operating
frequency. Furthermore, as it will be shown by Theorem 1 and
Property 1 (Section 5), our optimization problem is convex. Thus,
even if in reality the operating frequency can be varied only
in a limited set of values (usually 5 or 6 with the current
technology), modeling server capacity by continuous variables
is not a limitation, i.e., we can find the best set of scheduling
parameters for the VMs and global optimal CPU operating
frequency (see Fig. 11(b) in Appendix).
The cost of resource usage depends on several parameters such

as CPU utilization, cooling overhead, time of day energy cost,
and others. We adopt a linear model for resource cost as a first
approximation. The adoption of energy-proportional computing
systems,2 characterized by linear costs, is also advocated in the
literature [8]. Given the state-of-the-art of current hardware
technology, designing servers that exhibit this property is an open
issue. However, some recent proposals [42] based on advanced
resource allocation techniques, like the one proposed in this
paper and in our previous work [7,6], have shown how energy-
proportional systems can be obtained by off-the-shelf hardware
components.
The next section presents the performance model of our dy-

namic resource allocation framework, while Section 5 formalizes
the dynamic resource allocation problem bymeans of a non-linear
optimization model. Both sections make use of the input and out-
put parameters as well as of the decision variables defined in
Table 2.

4. System performance model

This section presents our analytical queuingmodel that predicts
the performance metrics of each VM. This model is a core
component of the optimization solution presented in Section 5 to
solve the dynamic resource management problem.
Our solution addresses the need to guarantee the response time

observed by each individual request, thus specifying guarantees
on the response time tail distribution. In other words, the goal
of our performance model is to estimate the probability that a
class i request experiences a response time that violates the SLA
contract of the corresponding WS class, i.e., that is longer than
the RSLAi threshold, given the (accepted) service load (i.e., the class
throughput Xi), and the fraction of the server physical capacity
assigned to the VM hosting the class, fi. Thus, given the response
time of a single class i request, Ri, our performancemodel estimates
the probability P(Ri ≥ RSLAi).

2 Systems in which no power is used during idle periods, low power is used
during lightly loaded periods, and proportionately higher power at higher loads.
This new type of SLA model, proposed as a means for providers
to offer more attractive contracts to their customers [24], is in
sharp contrast to traditional SLA contracts, assumed by most
previous work [43,50,7], which provide guarantees only on the
average response time of each request class. Guarantees only on
average performance may not be very helpful in the context
of current Internet workloads, which exhibit high variability.
Moreover, providing guarantees on a per-request basis may be
more attractive in the particular context of SOA systems, in which
customers access a service only a few times (possibly only once),
and, thus, may be interestedmainly in their own service execution
response times, as opposed to in an average across requests from
multiple customers.
We model each VM as a single queue. This scenario provides a

proof of concept, allowing us to evaluate the overall applicability
and effectiveness of our framework. Moreover, given the assump-
tions of Poisson request arrivals and exponentially distributed ser-
vice times discussed in Section 3.3, each VM is modeled as an
M/M/1 open queue with FCFS scheduling, as this discipline has
been frequently considered a reasonable abstraction for transac-
tional service centers [27]. We adopt analytical models in order to
obtain an indication of system performance, as in [29,43,44]. There
is a trade-off between the accuracy of the model and the time re-
quired to estimate system performance, which has to be evaluated
with strict time constraints. More accurate performance models
have been provided in the literature for Web systems (e.g., [14,15,
35]). However, due to the analysis complexity, these models can
deal with only small size models, based on a limited number of
queues, and thus cannot be adopted here.
We assume that requests belonging to the sameWS class i (i =

1 . . .N) are statistically indistinguishable and, thus, have the same
average service demand. We use Di to indicate the average service
demand in a virtualized server whenWS class i receives the whole
physical capacity of the server.Di can be evaluated by continuously
monitoring the system (e.g., see [28]), and it is assumed that the
monitoring component can also take the overhead introduced in
the systemby theVMM layer into account [49]. The average service
demand of class i requests when the server hosts multiple VMs can
then be estimated by inflating Di by the fraction of server physical
capacity assigned to VM i, that is, Difi [50].
In order to estimate the probability of response time violations

forWS class i requests, we need the probability distribution of class
i response times. Exact expressions for the response time distribu-
tion exist only for specific types of queues (for M/M/1 in particular
[20]). On the other hand, a number of simpler approximations is
available in the literature, some of which have been shown to yield
results very close to the exact expressions [3,14].

350 J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362
Markov’s Inequality [30,20] provides an upper-bound on the
probability that the response time of a class i request, Ri, exceeds
the threshold RSLAi . This upper-bound depends only on the average
response time experienced by class i requests, E[Ri], and can be
computed as P(Ri ≥ RSLAi) ≤ E[Ri]/RSLAi . However, Markov’s
Inequality is known for providing somewhat loose upper-bounds,
thus leading to allocation decisions that are too conservative, far
from optimal, and thus cost-ineffective [3,14].
Chebyshev’s Inequality [20], on the other hand, provides amuch

tighter upper-bound based on estimates of response time variance,
Var[Ri], in addition to estimates of the average response time E[Ri].
The average response time E[Ri] can be estimated as follows [27]:

E[Ri] =
Di/fi

1− (Di/fi)Xi
=

Di
fi − DiXi

. (1)

For M/M/1 queues, the response time variance is given by
Var[Ri] =

(Di/fi)2

(1−(Di/fi)Xi)2
. Chebyshev’s Inequality can be used by first

computing the average and variance of class i response times, and
then applying these metrics to estimate the probability that a class
i request violates its response time SLA as follows:

P(Ri ≥ RSLAi) ≤
Var[Ri]

(RSLAi − E[Ri])2

P(Ri ≥ RSLAi) ≈ min
(

Var[Ri]
(RSLAi − E[Ri])2

, 1
)
. (2)

In this paper, we extend our preliminary work presented in [4]
into three directions. First, we adopt the Chebyshev’s Inequality
instead of the Markov’s Inequality, as it meets a much better
trade-off between simplicity and precision. In particular, [3,14]
shows that it yields very similar results if compared to the exact
distribution for M/M/1 queues, in spite of the much simpler
mathematical expression. Second, we obtain a convex formulation
of the optimization problem with guaranteed global optimum.
Finally, we provide an extensive experimental analysis and a
comparison with other previous approaches from the literature.
Note that our estimate of the probability of response time

violation for WS class i depends on the fraction fi of the server
capacity assigned to the corresponding VM, as well as on the
VM’s achieved throughput Xi, which represent the two decision
variables of our optimization model (see next section). VM i’s
throughput, Xi, is constrained not only by the (predicted) arrival
rate of class i requests, λi, but also by the maximum arrival rate
that VM i can support before saturation (utilization equal to 100%),
i.e., Xi < 1

Di/fi
(or Xi <

fi
Di
). In order to avoid the performance

instability common to systems running close to saturation, we
introduce an upper-bound vi (0 ≤ vi < 1), up to which the
utilization of VM i is planned. An upper-bound on throughput Xi
can then be computed as Xi ≤ min

(
λi,

vifi
Di

)
.

5. Joint admission control and resource allocation problem

In our model, the SLA is defined by considering the response
time of each Web service invocation. If the response time of a
service invocation is above a given threshold RSLAi , then, the SLA
is violated, and the customer will not pay for the Web service.
Vice versa, if the response time is lower than RSLAi , the customer
will pay ωi to the provider. With this payment scheme, penalties
are modeled as missed payments due to a high response time. In
the case of a rejected request, the customer is not supposed to
pay for the Web service invocation either, since a rejected request
can be considered a particular type of QoS violation (availability
violation).
Let us denote by T the control horizon time interval, and

by C the cost per time unit associated with the use of server
capacity. The decision variables are Xi, class i throughput, and fi, the
computing capacity fraction assigned to VM i for the next period.
The provider’s goal is tominimize revenue loss from SLA violations
(rejections or response time violations) and the cost of system
resource usage, thus maximizing profits. Formally, the objective is
to minimize:
N∑
i=1

T ·
{
ωi
[
(λi − Xi)+ P(Ri ≥ RSLAi)Xi

]
+ Cfi

}
. (3)

The quantities (λi − Xi)T and P(Ri ≥ RSLAi)XiT are equal to the
numbers of SLA violations due to the admission control system and
due to response time violations, respectively, predicted for the next
control interval T . The term CfiT indicates the cost of use of the
computing resources (including energy and cooling) required to
serve the admitted class iWS requests in the control time horizon.
After replacing Eq. (2) anddropping the term

∑N
i=1 ωiλiT , which

is a constant with respect to decision variables fi and Xi, the
optimization problem can be formulated as:

(P1) min
N∑
i=1

[
−ωiXi + Cfi + ωiXimin

(
Var[Ri]

(RSLAi − E[Ri])2
, 1
)]

DiXi ≤ fivi ∀i (4)
Xi ≤ λi ∀i (5)
N∑
i=1

fi ≤ 1 (6)

Xi, fi ≥ 0 ∀i. (7)

Constraint family (4) entails that the overall utilization of system
resources dedicated to serve class i requests is below the planned
threshold vi, and guarantees that the queuing network model is in
equilibrium. Constraint family (5) entails that class i throughput
is less than or equal to the predicted incoming workload, while
constraint (6) guarantees that at most 100% of the server capacity
is used in the next period.

Note that, the term min
(

Var[Ri]
(RSLAi −E[Ri])

2 , 1
)
can be re-written as

min

 D2i
(fi−XiDi)2

(RSLAi −
Di

fi−XiDi
)2
, 1

, while the objective function can be re-
stated as:

N∑
i=1

−ωiXi + Cfi + ωiXi D2i
(fi−XiDi)2

(RSLAi −
Di

fi−XiDi
)2

 .
The change in the objective function can be applied because, in any
optimal solution, the following condition holds:

τi =

D2i
(fi−XiDi)2

(RSLAi −
Di

fi−XiDi
)2
≤ 1 ∀i. (8)

Indeed, if, by contradiction, in any local or global optimum for a
given class i with Xi > 0, the value τi is strictly greater than 1,
then the optimum can be improved by setting Xi = fi = 0, while
satisfying all the constraints. Then, the following optimization
problem can be considered:

(P2) minF (X, f) =
N∑
i=1

−ωiXi + Cfi + ωiXi D2i
(fi−XiDi)2

(RSLAi −
Di

fi−XiDi
)2


s.t. constraints from (4) to (7).
(P2) has a non-linear convex objective function with linear

constraints, as demonstrated by the following Theorem. Hence, the
global optimal solution can be determined.

J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362 351
Theorem 1. The objective function of problem (P2) is convex in the
feasible solution set.
Proof. See Appendix. �

5.1. Optimization technique

(P2) is a general nonlinear optimization problem and has to
be solved within the short-term planning horizon of autonomic
computing (i.e., 5–10 min [5,40,7]). In such a short optimization
time, commercial nonlinear optimization tools cannot solve full
size instances. For realistic problems of a reasonable size, a
decomposition approach has been considered.
The optimization problem includes two distinct families of

variables: Xi, which determine the optimal admission control for
the next control horizon, and fi, which determine the optimal
allocation of system resources. In similar contexts [50,4], the Fixed
Point Iteration technique (referred to as FPI throughout the rest of
the paper) has beenproved efficient in providing optimal solutions.
FPI identifies the optimal value of a subset of variables, while the
value of the other variables is fixed, and stops when the difference
between two subsequent values of the objective function is lower
than a given threshold εFPI .
Our approach is reported in Algorithm 1. First, variables fi are

randomly initialized to non-negative values to satisfy constraint
family (6) as an equality (step 1). Then, the values of variables fi
are held fixed, and the optimal admission control variables Xi are
identified (step 4). In the next step, the values of Xi are held fixed,
and the optimal resource allocation variables fi are determined
(step 6).
The next two sections present the solutions of the admission

control and resource allocation.

f = BuildRandomSolution1
∆ = ∞2
while∆ > εFPI do3

X =optAC(f));4
g1 = Eval(X, f)5
f =optRA(X)6
g2 = Eval(X, f)7
∆ = |g2 − g1|8

end9

Algorithm 1: Optimization Procedure.

5.2. The admission control sub-problem

If the capacity allocation of system resources in the virtualized
environment is held fixed, i.e. fi = f i, then the admission control
sub-problem can be formulated as follows:

(P3) min
N∑
i=1

−ωiXi + Cf i + ωiXi D2i
(f i−XiDi)2

(RSLAi −
Di

f i−XiDi
)2


0 ≤ Xi ≤ Ui = min

[
f ivi
Di
, λi

]
∀i (9)

where Xi are the decision variables. (P3) is separable, and N
admission control sub-problems (P3i) of a single variable Xi can
be solved independently. Each sub-problem can be formulated as:

(P3i) max gi(Xi) = Xi − Xi

D2i
(f i−XiDi)2

(RSLAi −
Di

f i−XiDi
)2

0 ≤ Xi ≤ Ui.
Note that if the resource allocation is fixed, the optimal solution

of the admission control sub-problem is independent of price ωi.
(P3i) has a non-linear objective function with the independent
variable bounded in the interval [0,Ui]. The solution can be
obtained by determining the unique stationary point pi of gi(Xi).
If pi is feasible, then it is the optimal solution. Otherwise, the
optimal solution is the best between the two extremes of the
feasibility interval. This property follows by the convexity of the
global problem (P2).

5.3. The resource allocation sub-problem

If the admission control problem has been solved, and the
throughput for each WS class i is held fixed at Xi = X i, then the
resource allocation sub-problem can be formulated as:

(P4) min h(f) =
N∑
i=1

−ωiX i + Cfi + ωiX i D2i
(fi−X iDi)2

(RSLAi −
Di

fi−X iDi
)2


fi ≥

DiX i
vi
∀i (10)

N∑
i=1

fi ≤ 1 (11)

where fi represent the only decision variables. Note that a feasible
solution exists for problem (P4) and can be identified by setting
fi =

DiX i
vi
for each i, since the condition (11) is satisfied by the

solution of each problem (P3i).
h(f) is convex since F (X, f) is convex. Let f (1)i =

DiX i
vi
be

the lower bound of class i fraction of capacity. The first partial
derivatives of the objective function h(fi) are:

∂h
∂ fi
= C +

2D2i R
SLA
i ωiX i

(−fiRSLAi + Di(1+ R
SLA
i X i))3

.

The first order stationary condition provides only one real root:

f (2)i =
Di
RSLAi
+

3

√
2D2i ωiX i
C(RSLAi)2

+ DiX i.

Let us denote by N ⊆ [1,N] the set of indexes i, such that f (2)i <

f (1)i and let F = 1 −
∑N
i∈N f

(1)
i . If the stationary point is feasible

with respect to linear constraints (10) and (11), then it is also
the global optimal solution. Otherwise, for all i ∈ N the optimal
solution is obtained by setting fi = f

(1)
i , i.e., class i is not profitable

with respect to the cost of resource usage, and we set the capacity
devoted to the corresponding VMequal to the lower bound. For the
remaining VMs, two cases are possible:
• if

∑
i6∈N fi < F , we are in light load conditions, and the optimal

solution can be found by setting the variables equal to their
stationary values;
• otherwise, we are in high load conditions, and the optimal
solution is obtained by using the whole server capacity,
i.e., constraint (11) is satisfied as an equality, and

∑
i6∈N fi = F .

This property is demonstrated by the following theorem.

Theorem 2. In the optimal solution of problem (P4), the capacity for
WS class i is given fi = f

(1)
i , for each i ∈ N. For each i 6∈ N, fi is either

f (2)i or it belongs to the plane
∑N
i=1 fi = 1.

Proof. See Appendix. �

5.4. Optimization technique implementation

Wehave developed an ad-hoc controller which implements the
procedure reported in Algorithm 1. Since the objective function
of problem (P3) is concave and continuously differentiable in the

352 J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362
feasibility region, its solution is efficiently obtained by applying
standard line search techniques, such as bi-section [26]. The
solution of problem (P4) is obtained either by setting the variables
equal to their stationary points if feasible, or by applying an ad-hoc
gradient technique [26] that determines, at each step, the optimal
resource allocation between two WS classes.
The complexity of the solution of each admission control sub-

problem is O(1). Hence, the complexity of the solution of problem
(P3) is O(N). The complexity of the solution of problem (P4) is
likewise O(N). Overall the FPI procedure complexity is O(nFPI×N),
where nFPI is the number of iterations required by the procedure
to converge within a factor εFPI . In Section 6.1, we will show that
the number of iterations required to converge within a precision
of 10−3 is typically within 5 and 15. Therefore, our approach has
an efficient solution with time complexity that increases linearly
with the number of hosted WS classes, within a reasonably small
constant factor.

6. Experimental results

We extensively evaluated our dynamic resource management
solution, aiming at assessing both its scalability and cost-
effectiveness in comparison with alternative existing solutions.
Towards that goal, we consider different representative and
realistic scenarios, built from a variety of system and workload
configurations.
Section 6.1 presents the most representative experimental

results on the scalability of our optimization algorithm. A cost-
benefit evaluation of the proposed framework, comparing it with
alternative strategies built from top-performing state-of-the-art
resource allocation and admission control techniques [36,12], is
presented in Section 6.2. Finally, a discussion on the sensitivity of
our approach to two key assumptions, namely, exponential service
times and exact prediction of incoming workloads, is presented in
Section 6.3.

6.1. Performance of the optimization algorithm

This section reports results on the time efficiency of our
optimization algorithm for a growing number of WS classes.
We ran experiments with various configurations of the model
parameters, evaluating the algorithm execution time for a wide
range of problem instances. The set of experiments conducted to
assess the time efficiency and scalability of our algorithm, drawn
from the literature [3,9,50], is described next.
The algorithm is tested on a wide set of randomly generated

problem instances. The number N of WS classes is varied
between 100 and 1000, a range that captures the sizes of current
installations of VMM monitors, such as VMWare ESX and Xen,
which run up to 170 VM on 32 physical cores machines [48].
For each value of N , 20 test cases are generated. In each test

case, the values of Di are uniformly randomly generated in the
range [0.1, 3] seconds. RSLAi is set proportional to the average
service demand RSLAi = αi × Di, where αi is a randomly
generated dimensionless constant in the range [10, 30], as in [50,
7]. Furthermore, for each test case, 7 problem instances are built as
follows. First, the fraction of the incoming workload for each WS
class is randomly generated. Then, the total incoming workload,
i.e.,

∑N
i=1 λi, is varied in such away that the total systemutilization

ranges between 20% and 80% at steps of 10%. By doing so, we are
able to test our solution performance in both lightly and heavily
loaded conditions, as in [50].
The price of each class i request is set to ωi = βi × Di, where

βi is a constant expressed in $ /s, uniformly randomly generated in
the interval [1, 5]. With these values of ωi, the revenues obtained
by using a single CPU for one hour varies between $1 and $10,
according to the current commercial fees (see, for example, the
Fig. 2. FPI execution trace.

SunUtility Computing infrastructure3 orAmazon Elastic Cloud4). The
plannedmaximumutilization of eachVM, vi, is varied between60%
and 90%, as in [36,12]. The cost C , per time unit, associated with
the use of system resources is varied between 10% and 30% of the
maximum revenues per unit of capacity, as in [50].
Overall, 20 × 10 × 7 = 1400 problem instances are built and

analyzed. The FPI threshold εFPI (the stopping criterion) is set to
10−3.
Fig. 2 shows a representative execution trace of the FPI

procedure for one of the 1400 problem instances analyzed. Note
that, at every iteration the FPI performs two steps, i.e., one
optimization for X variables (half iterations in Fig. 2 plot) and
one for f variables. Results show that the initial solution of FPI
is improved by about 40%–50%. The number of iterations nFPI
required to converge within the precision εFPI = 10−3 is typically
between 5 and 15. For all cases analyzed,we found that the optimal
solution can be determined in about 20 s on a general purpose
PC, even for very large systems (up to 1000 WS classes). Thus, we
believe that the FPI algorithm is very efficient and can be applied
in real-world practical scenarios.

6.2. Cost-effectiveness of the dynamic resource management frame-
work

This section presents an evaluation of the economic efficiency
of our dynamic resource management framework. The evaluation
is performed through simulation, by comparing results against
previous solutions available in the literature. The main metric of
interest is the provider’s total profit (i.e., revenues minus costs)
obtained with each strategy, according to the pricing scheme
discussed in Section 5. Complementary, we also quantify the
fraction of SLA violations, which not only has direct impact on the
provider’s profits but also reflects (at least partially) the quality of
service experienced by customers.
We consider five scenarios of interest in our evaluation. In

scenarios 1 and 2 (Section 6.2.1), built from synthetic workload
traces, we compare our framework against alternative solutions
based on the resource allocation strategy proposed in [36] and the
admission control scheme proposed in [12]. These comparisons
aim at highlighting the main trade-offs and benefits from our
framework. In scenarios 3, 4, and 5 (Section 6.2.2), we further
evaluate our strategy, comparing against previous solutions, for
more realisticworkload configurations built from traces of requests
to a real Web server system. The five scenarios are summarized in
Table 3, which shows, for each them, the number ofWS classes (N),
the workload type as well as a brief description of other aspects of
the experimental setup.

3 http://www.sun.com/service/sungrid/index.jsp.
4 http://aws.amazon.com/ec2/.

http://www.sun.com/service/sungrid/index.jsp
http://aws.amazon.com/ec2/

J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362 353
Table 3
Scenarios for evaluation of the cost-effectiveness of our solution.

Scenario N Workload Description

1 2 Synthetic Our resource allocation solution vs. [36].
2 2 Synthetic Our joint solution vs. alternative ones.

Scenario 1 with doubled arrival rates.
3 12 Built from real access traces Our joint solution vs. alternative ones.

Customers from the same timezone.
4 12 Built from real access traces Our joint solution vs. alternative ones.

Scenario 3 with higher infrastructure costs.
5 12 Built from real access traces Our joint solution vs. alternative ones.

Scenario 3 with 6 classes shifted by 2 h.
(a) Workload profiles. (b) Provider’s profit.

Fig. 3. Resource allocation: Our solution vs. the alternative one [36] (Scenario 1).
We have built an event-driven simulator that takes as input
the workload traces of N WS classes [14]. The simulator is coupled
with the optimizationmodel solver based on Algorithm 1, which is
called, at the end of each control interval, to calculate the resource
allocation fi and the accepted throughput Xi for each class i, for the
next interval. During each interval, per-request response time as
well as per-class throughput and resource allocation are collected
and used to compute the provider’s profit. Our simulator employs a
fair admission control mechanism, which accepts a class i request
with probability Xi/λi. This is a conservative approach compared
to other mechanisms that aim at minimizing the inter-arrival time
variance [20]. We also note that the assumption of Poisson arrivals
holds also for requests that are accepted into the system.
Since our current focus is on the economic efficiency of each

strategy, we here consider a best-case scenario to understand key
trade-offs. In particular, we assume that there is no time limitation
for adapting the system, and that an ideal workload forecasting is
used, i.e., a perfect prediction of the number of requests to process
in the next interval is available. The selection and evaluation of
a practical workload forecasting method, among several existing
techniques [2] with a varying degree of accuracy, is left for future
work. Nevertheless, in Section 6.3.2, we evaluate the sensitivity of
our approach to errors in the prediction of the incoming workload.
In all experiments, we assume that: (i) the maximum planned

utilization for all VMs is 90%, (ii) the price for serving each class i
request within the pre-determined SLA is 1, and (iii) the response
time SLA for each class is equal to 30 times the class average
service demand. In other words, we set vi = 0.90, ωi = 1, and
RSLAi = 30 × Di, for all i. We also assume that the cost per time
unit associated with the infrastructure, C , is a fraction (10%, unless
otherwise noted) of the maximum achievable profit per unit of
capacity, which is computed as the product of the price for serving
a class i request, ωi, by the maximum theoretical throughput rate,
given by Xi ≤ 1/Di [20]. Thus, C = 0.1×ωi×1/Di (see also [50,4]).
The following sections present the most significant results for

all scenarios. The reported results are averages of 5 runs with
standard deviations under 4% of the means.
6.2.1. Synthetic workloads
This section discusses results for the first two scenarios, both

built from two WS classes (N = 2) with synthetic workloads.
For the sake of simplicity, we consider classes characterized by
homogeneous service demands with average values equal to 1 ms
(i.e., Di = 0.001) and heterogeneous workloads. However, similar
results were obtained for heterogeneous Di as well.
In scenario 1, requests from each class arrive according to the

periodic step-like non-homogeneous Poisson processes shown in
Fig. 3(a). Arrival rates vary from 0 to 1000 requests per second,
with step and period of 1000 and 10000 s, respectively. Both
workloads have identical profiles with a shift in their periods.
This is an interesting scenario for dynamic and self-adaptive
allocation strategies, which are able to reassign idle capacity
from underloaded to overloaded VMs in order to satisfy SLA
requirements. We assume the resource allocation strategies are
called at the end of each control interval,which coincideswith time
instants when per-class request rates change.
In this scenario, we focus on the resource allocation problem,

comparing our solution against the method proposed in [36],
here referred to as simply the alternative. Recall that this resource
allocation method aims at determining the resource (i.e., capacity)
needed by each VM i in order to meet a target utilization range
(Umini , Umaxi), given the incoming workload. Thus, it does not
perform admission control. Moreover, in contrast to our solution,
resource allocation is performed separately and independently for
each VM.
Therefore, in order to make a fair comparison, we take the

following actions. First, we turn the admission control component
of our framework off, i.e., we admit all incoming requests. Second,
we run the alternative resource allocation method [36], collecting
the maximum capacity, Cmax, simultaneously allocated by the
method for all VMs.5 We then calculate the provider’s revenues
from requests served within pre-defined SLA requirements as

5 We note that Cmax is measured as a factor of the total capacity of the physical
server.

354 J. Almeida et al. / J. Parallel Distrib. Comput. 70 (2010) 344–362

strategies applied by both methods. By taking the request re-
sponse time distribution into account to share available resources
among hosted VMs, our optimizer can make a better use of the
total capacity. In fact, it allocates fewer resources than the alter-
native method, thus saving infrastructure costs, while still yield-
ing a (slightly) smaller number of SLA violations. The alternative
solution, which takes into account only the infrastructure utiliza-
tion and makes independent resource allocation decisions, allo-
cates more resources (see Fig. 4). It also yields a larger number of
SLA violations. As a result, it leads to a (slightly) lower total profit
for the provider (2%, on average, in this light load scenario). Simi-
lar results are also obtained for different target utilization ranges,
as shown in Table 4, which presents the overall profit gains of
our solution over the alternative one, the average allocated ca-
pacity, the average fraction of requests for which SLAs are vio-
lated as well as the average fraction of requests which were served
within their SLA requirements (i.e., average throughput) for each
method.
In scenario 2, the two WS classes have the same workload

profiles as in scenario 1, but the workload intensities are twice as
heavy, in each step, for both classes. In other words, we double
the arrival rates while keeping average service demands and SLAs
equal to scenario 1. In this heavier load scenario, we consider
our joint resource allocation and admission control solution,
(a) Our resource allocation. (b) Alternative resource allocation [36].

Fig. 4. Allocated capacity (Scenario 1).
Table 4
Economic efficiency of resource management approaches (Scenarios 1 and 2).

Scenario Solution Metric Target utilization range
0.4–0.6 0.5–0.7 0.6–0.8 0.7–0.9

1

Ours

Profit Gains over Alternative 5% 2% 1% 5%
Avg. Allocated Capacity 1.55 1.47 1.42 1.31
% SLA Violations 0.07 0.05 0.03 0.1
Avg. Throughput (req/s) 1000 1000 1000 1000

Alt. [36]
Avg. Allocated Capacity 1.93 1.62 1.40 1.24
% SLA Violations 0.2 0.4 1.1 5.0
Avg. Throughput (req/s) 1000 1000 1000 1000

2

Ours

Profit Gains over Alt. A 39% 38% 39% 41%
Profit Gains over Alt. B 22% 20% 19% 5%
Profit Gains over Alt. C 23% 37% 52% 58%
Avg. Allocated Capacity 2.9 2.77 2.5 2.22
% SLA Violations 0.04 0.04 0.5 1.0
Avg. Throughput (req/s) 1996 1996 1984 1843

Alt. A
Avg. Allocated Capacity 2.5 2.2 1.9 1.68
% SLA Violations 0.1 0.3 1.4 9.1
Avg. Throughput (req/s) 1448 1444 1430 1319

Alt. B
Avg. Allocated Capacity 2.5 2.47 2.43 2.22
% SLA Violations 0.1 0.1 1.2 1.2
Avg. Throughput (req/s) 1668 1713 1728 1756

Alt. C
Avg. Allocated Capacity 2.5 2.2 1.9 1.68
% SLA Violations 8 11 12 30
Avg. Throughput (req/s) 1631 1463 1308 1180
well as the costs associated with the total capacity allocated. In
comparison, we run our method using Cmax as the total system
capacity.6 We then compare the total provider’s profits achieved
by both methods. By performing such comparison, we are, in turn,
comparing the economic efficiency of the two resource allocation
strategies given a fixed total system capacity.
Fig. 3(b) shows the provider’s profits over time for both

strategies, when the alternative resource allocation technique [36]
targets the system utilization range Ui ∈ (0.5, 0.7). The capacity
assigned to each VM aswell as the total system capacity effectively
used by our method and by the alternative solution are shown
in Fig. 4(a) and (b), respectively. Since this scenario is built by
allocating as much capacity to each VM as it needs to reach
the target utilization range, the load is relatively low for the
system configuration. Thus, most requests that arrive (and thus
are admitted into the system) will be served within their SLA
requirements. In other words, there is little room for benefit from
any one strategy over the other.
Nevertheless, this scenario highlights some fundamental issues

and trade-offs that are worth noting with respect to the allocation

6 This is equivalent to inflating average service demands Di by Cmax in our
performance and optimization models as well as response time SLA expressions.

