
Classification of Load Balancing in the Internet
Rafael Almeida† Ítalo Cunha† Renata Teixeira‡ Darryl Veitch? Christophe Diot]

†Universidade Federal de Minas Gerais, Brazil ‡INRIA, Paris, France
?University of Technology Sydney, Australia]Google, Mountain View, CA

Abstract—Recent advances in programmable data planes,
software-defined networking, and the adoption of IPv6 support
novel, more complex load balancing strategies. We introduce the
Multipath Classification Algorithm (MCA), a probing algorithm
that extends traceroute to identify and classify load balancing in
Internet routes. MCA extends existing formalism and techniques
to consider that load balancers may use arbitrary combinations
of bits in the packet header for load balancing. We propose
optimizations to reduce probing cost that are applicable to MCA
and existing load balancing measurement techniques. Through
large-scale measurement campaigns, we characterize and study
the evolution of load balancing on the IPv4 and IPv6 Internet
with multiple transport protocols. Our results show that load
balancing is more prevalent and that load balancing strategies
are more mature than previous characterizations have found.

I. INTRODUCTION

Internet traffic load balancing helps with increasing band-
width, reliability, and reducing maximum link utilization.
Load balancing can be configured in routers manually, or
automatically by mechanisms such as Equal-Cost Multi-Path
(ECMP). Routers that perform load balancing, which we call
load balancers, compute which network link a packet should
be forwarded to as a hash function of the packet’s flow
identifier, a subset of fields in the packet’s headers (e.g., IP
addresses and port numbers) [1].

The standard tool for measuring Internet routes is trace-
route [2]. Classic traceroute uses the destination port to store
probe identifiers, which often triggers load balancing and
causes measurement artifacts that lead to incorrect inference
of inexistent links, loops, and cycles [3]–[5]. Paris trace-
route [1], [3] is an extension of traceroute that fixes flow
identifiers to steer probes over a single link at load balancers,
avoiding such measurement artifacts. The Multipath Detection
Algorithm (MDA) extends Paris traceroute and systematically
varies probes’ flow identifiers to identify links used for load
balancing at a router (if any) [6].

Recent advances in programmable data planes, software-
defined networking, and the adoption of IPv6 lead to increas-
ingly complex load balancing deployments [7]–[17]. Existing
MDA implementations, however, only vary transport port
numbers and the ICMP checksum [6], [18]. Previous work
have applied ad-hoc extensions to MDA to classify load
balancers as per-packet, per-flow, or per-destination [3], [19],
[20], but these three predefined types are not comprehensive
and the classification method does not generalize to other load
balancer types. As a result, MDA may fail to identify new
types of load balancing. Indeed, our results show that MDA
deterministically returns incomplete route measurements for

2.6% of IPv4 and 1.8% of IPv6 routes. Also, applying the
existing ad-hoc classification method leads to deterministic
misclassification of 4.0% of IPv4 and 12.7% of IPv6 load
balancers in our measurements (§VIII).

In this paper, we extend the existing formalism and router
model [6] to allow more general load balancer behavior (§III).
We introduce the Multipath Classification Algorithm (MCA),
a probing strategy that identifies the set of bits in the packet
header used by load balancers (§IV). We release an implemen-
tation of MCA and a route analysis tool (§V).

MCA increases the probing cost of route measurements [6],
[21]. To balance this, we present optimizations that reduce the
average number of probes sent on MCA measurements by
6% for IPv4 and 8% for IPv6, without any loss of accuracy
(§VII). Overall, MCA is practical, with a probing cost only
34% higher than that of MDA.

We conduct large-scale measurement campaigns using
MCA, collecting measurements of IPv4 and IPv6 paths in
the Internet using multiple transport protocols from a diverse
set of vantage points (§VI). We use these to characterize the
prevalence and behavior of load balancing in the Internet to-
day, and reappraise previous characterizations [3], [20] (§VIII).
Our results indicate that load balancing is more prevalent and
their configurations more complex than previously reported.
In particular, 74% of IPv4 and 56% of IPv6 routes traverse
at least one load balancer, and 23% of IPv4 and 18% of IPv6
load balancers have three or more next hops.

This work improves the foundations upon which we build
tools to identify load balancing in the Internet. Our imple-
mentation of MCA provides more accurate information than
existing tools, and can be useful in network characterization
studies, particularly those concerned with traffic engineering
and reliability to failures.

II. DEFINITIONS AND BACKGROUND

We follow the same notation as in previous work [22]. At
any given time, the connectivity between a fixed source s and
a destination d is realized by its current route. A route can be
simple, consisting of a sequence of IP interfaces from s toward
d, or branched, when one or more load balancing routers
(LB) are present, giving rise to multiple overlapping sequences
(called “multi-paths” in [6]). Thus a route is a directed graph
with interface-labelled nodes. A route can be a sequence that
terminates before reaching d due to routing changes or the
absence of a complete route to the destination.

We define a diamond as the set of all interfaces between an
LB and its join point, the interface where all the sub-branches

s A
B

C
E

F

G d

D

(a) Branched route

s A
C

G d

D

(b) Possible traceroute output

Figure 1: Example branched route and traceroute output

originating from the LB first rejoin. An outer diamond is
one that contains other nested LBs, and therefore their own
diamonds. We define an outermost diamond as one which is
not contained in some other diamond. Figure 1a shows an
example branched route where the LB A defines an outermost
diamond with join point G, containing a diamond defined by
nested LB B, also with join point G. A branched route can
have multiple (nonoverlapping) outermost diamonds.

By hop-set or hop we define the set of interfaces found
at some fixed distance, or radius, from the source. We denote
the hop-set at radius r in route p as p[r]. Conversely, for some
valid hop-set h in route p, we let p〈h〉 denote the radius of h.
Thus h = p[p〈h〉]. In Figure 1a, p = [s,A, {B,C}, {D,E, F},
G, d] is a route with three branches. The first hop is p[1] =
{A}, the second hop is p[2] = {B,C}, and hop {G} is found
at radius p〈{G}〉 = 4. Assuming loop-free routes, hops are
unique, although individual interfaces can be found in multiple
hops when route branches have different lengths.

A. Branched Routes and MDA: Key Idea and Limitations

Classic implementations of traceroute may miss routers
and links as well as infer links that do not exist when
measurements traverse load balancers [1], [6]. Figure 1 shows
an example branched route (left), where A and B are load bal-
ancers, and a possible (incomplete) traceroute output (right).

The Multipath Detection Algorithm (MDA) is a proba-
bilistic algorithm to map out the branched route between a
given source s and destination d with statistical guarantees
[6]. Assume an interface i at radius r in some branch of the
route is known. MDA tests if i is a load balancer by sending
multiple probes through i that expire at radius r + 1, using
randomly varied packet headers to stimulate load balancing.
Assuming the stimulation results in a uniformly distributed
selection over the K ≥ 1 next hops of i, MDA can specify
the number of attempts that should be made, as a function of
the number 1 ≤ k ≤ K of interfaces found so far, in order to
provide statistical guarantees that all K have been found, and
hence, when applied recursively, that all branches of the route
have been discovered.

For example, to identify the branched route in Figure 1a
with a confidence level α = 0.95, MDA begins by sending
9 probes with varying flow identifiers to A’s next hop. The
probability that a second iterface will not be found (assuming
a uniform LB), is 0.59 = 0.001953. Once a second interface
is seen, MDA labels A as an LB then sends an additional
8 probes in an attempt to find more. Since no more exist,
MDA gives up and proceeds to the next hop after having
expended 17 probes. This process repeats until MDA reaches
the destination.

The common limitation of LB discovery approaches is the
assumptions made about the nature of the LBs; in particular,
the header fields on which they are assumed to base decisions
on. Most commonly, port number fields are assumed, the so
called per-flow LBs. However, it is well known that other
kinds exist, for example per-packet, where branch selection
is random, independent of packet headers.

Some MDA implementations [3], [19], while being primar-
ily per-flow based, have included ad-hoc extensions to provide
a degree of LB classification. For example: first send multiple
probes with fixed port numbers (i.e., identical packet headers)
and classify any identified LBs as per-packet. Then vary port
numbers and classify any additional LBs as per-flow. Finally,
vary the last bits of the destination IP address and classify any
further ones as per-destination.

The above approaches are imperfect, and still rely on
knowing the nature of deployed LBs. The landscape is made
more complex by IPv6, which may rely on the IPv6-specific
flow label field introduced to facilitate load balancing [23],
and SDN, which enables network administrators to configure
LBs over a large set of packet header fields [7]. There has
been no systematic study of which fields are used for load
balancing and how they vary across routers.

III. LOAD BALANCER MODEL

Load balancing at a given router has two main aspects: (i)
when load balancing is performed, and (ii) the type of load
balancing when it is performed.

Aspect (i) is a function of whether multiple routes (through
different next hops) to a destination prefix are known, the
incoming link at the router, and the policy in place. To
capture these dependencies, we test for LB behavior at the
granularity of 〈interface IP, destination prefix, upstream IP〉
triples, where the interface and upstream IPs are those returned
by traceroute, used here, as usual, as surrogates for the true,
unknown interfaces.

Aspect (ii) is a function of the router’s forwarding decision
algorithm. We model this as an ideal hash function over a
hash domain consisting of a subset, in general not contiguous,
of packet header bits. Each possible bit-field value over the
domain is mapped to one of the available next hops. We
consider hash domains are LB-specific.

The goal of the above model is to capture very general
LB behavior. For (i), it allows load balancing to be triggered
on some paths but not others, and the load balancing type to
be path dependent. For (ii), it includes the classic LB types
mentioned earlier, but allows for much richer structure that
router vendors or SDNs may be implementing today or in the
future. Per-packet LBs are included as the special case of an
empty hash domain.

The generality of arbitrary hash domains may seem in-
tractable at a practical level. There are two important reasons
why this is not the case which we exploit in the sections below:

1) LB discovery: By sending probes which vary all header
bits (within some given target set), the presence of a LB
can be detected without needing to know the exact hash

2

domain. Moreover, if we assume the hash function maps
uniformly over the next hops, then the same stopping
rules and statistical guarantees used for MDA [6] still
apply regardless of the unknown hash domain.

2) LB classification: It is not necessary to fully determine
the hash domain to gain useful results. For example,
under the uniform hash assumption, if we vary a single
field (e.g., origin port) uniformly, we will induce a
uniform sampling of the next hops provided the hash
domain and the field have a non-empty intersection.
Thus, the involvement of fields in LB decisions can be
determined without a full resolution at the bit level.

Hash functions are employed to approximate random selec-
tion of next hops, but are actually deterministic. This can result
in undesirable polarization effects when nested LBs are of the
same type. To describe this we define, for each interface i in
hop p[r] of route p, the set flows(i, r) of flow identifiers (bit-
field values in the packet header) with which i ∈ p[r] can be
reached. For example in Figure 1a, if A and B were polarized,
then all flows that A sends to B would be sent on to D, that
is flows(B, 2) = flows(D, 3). It would then be impossible to
observe interface E, regardless of the probing strategy used.
Polarization has been observed in real routers and flagged as
undesirable, as it prevents effective use of all available routes,
and modern implementations include mechanisms to avoid it.
For example, Cisco and Juniper hash a router-specific identifier
together with the packet’s flow identifier, while Arista and
Cumulus allow configuration of a seed for the hash function.

Another challenge to identifying load balancing is dealing
with non-uniform hash functions. These are sometimes de-
ployed to better align link capacity and traffic volumes [8],
[24]. For example, in Figure 1a, router A could send 2/3 of
the hash domain towards B and the remainder towards C.
Our techniques can identify and classify non-uniform load
balancers, however our bounds on the probability of error
assume uniformity.

IV. MULTIPATH CLASSIFICATION ALGORITHM

MCA receives as input the destination IP address d to trace;
a confidence level αd to bound the probability of detection
errors, a confidence level αc to bound the probability of
classification errors; and a set B of target bits in the packet
header defining the scope of LB detection and classification.
We call the set of header fields that intersect B the target
header fields, denoted F .

MCA measures a route p hop-by-hop in increasing radius
order. At each radius r, MCA first executes a modified version
of MDA to enumerate next hops of routers in p[r] that
perform load balancing involving bits in B (§§IV-A and IV-D).
MCA then sends additional probes to classify the type of any
LBs found (§IV-B). During both detection and classification
phases, MCA employs optimizations to reduce the probing
cost (§IV-C). After reaching the destination or stopping con-
ditions (§IV-E), MCA outputs a directed graph representing
the route discovered and the classification of each LB.

A. Load Balancer Discovery

MCA computes the number of probes to send through an
interface to enumerate next hops following MDA (§II-A, [6]).

The novelty of MCA is the application of a broad definition
of an LB search ‘universe’ based on B, operating in the context
of an arbitrary LB operating on the hash domain H. In theory,
if the flow identifiers (the value of the bits in B) carried by
probes are chosen uniformly, then so will be the bits in H∩B,
resulting in uniformity over the next hops. In practice, as |H∩
B| may be small, it is important for flow identifiers to vary all
bit combinations as much as possible, to ensure variety over
H ∩ B. To achieve this we proceed recursively as follows.

Let φ1, φ2, . . . , φn be the flow identifiers generated for
the first n probes. We generate the new flow identifier φn+1

greedily bit-by-bit in random order. The value of each bit is set
such that it maximizes the Shannon entropy of the distribution
of values seen over the n+ 1 identifiers, restricted to the bits
considered so far, with ties broken randomly. If the generated
φn+1 repeats an earlier identifier, bits are randomly flipped
until uniqueness is obtained. This greedy heuristic generates
each flow identifier with O(|B|) operations.

Although MCA (and measurement tools in general) cannot
control all bits in the source and destination addresses while
performing a measurement, MCA still supports testing whether
they are included in hash domains by allowing B to include the
least significant bits of source and destination addresses.1 Later
we also vary the source IP at a higher level, via exploiting
multiple vantage points.

B. Load Balancer Classification

For each LB identified in the previous step, our goal is to
identify which header bits in B overlap its hash domain.

For each interface i identified as a LB, MCA chooses one
flow identifier known from the detection phase to traverse i,
and sends multiple probes with that fixed identifier to i’s next
hop. We compute the number of probes to send as in MDA [6].
MCA classifies i as a per-packet LB if responses arrive from
multiple next hops.

If interface i is not classified as per-packet, MCA sends
additional probes according to Algorithm 1 to infer which bits
in B overlap with i’s hash domain and classify the LB type
(line 3). The number n of trials to perform for each bit is a
function of a configurable confidence level αc that determines
the acceptable probability of classification error (line 2).

In each trial, MCA identifies a flow identifier φ that traverses
i and a flow identifier φ′ that also traverses i and is identical to
φ except for the value of b (line 5, §IV-C). MCA sends probes
with φ and φ′ to i’s next hop (if not yet sent) and waits for
the responses (lines 6–7). This process is repeated until MCA
identifies flow identifiers φ and φ′ that i forwards to different
interfaces (lines 8–10), or until enough trials are performed
to infer that b does not overlap with i’s hash domain at the
configured confidence level (i.e., when j = n in line 4).

1Varying the source IP address requires the measurement device to control
multiple IP addresses (e.g., when allocated a /64 IPv6 address).

3

Algorithm 1: Classify load balancer interface i at hop h
Input : Load balancer interface i ∈ h with set of next

hops N , known not to be a per-packet load
balancer; target bit set B; confidence level αc

Output: Interface i’s hash domain Hi ⊆ B
1 Hi ← ∅
2 n← NUMTRIALS(|B|, |N |, αc) Eq. (1)
3 foreach bit b ∈ B do
4 for j ← 1 to n do
5 φ, φ′ ← SELECTFLOWS(i, h, b) §IV-C
6 reply ← PROBEREPLY(φ, p〈h〉+ 1)
7 reply ′ ← PROBEREPLY(φ′, p〈h〉+ 1)
8 if reply 6= reply ′ then
9 Hi ← Hi ∪ b

10 break
11 return Hi

MCA computes the number of trials to send when clas-
sifying an LB as a function of the confidence level αc. We
define the classification of an LB interface i as correct when
all target bits in B are correctly labelled as overlapping or
not with i’s hash domain Hi. We assume LBs distribute
flow identifiers uniformly over next hops. Violation of this
assumption increases the misclassification probability.

We denote the probability that an interface i forwards
traffic to its next hop j as Pnext(i, j). Using the unifor-
mity assumption across the set of next hops Ni, we have
Pnext(i, j) = 1/|Ni| for all j ∈ Ni.

Mislabelling can only occur for a header bit b ∈ B that
overlaps Hi. We compute the number of trials considering
the worst case scenario where B ∩ Hi = B; if B is a
proper subset of Hi, then we overestimate the number of
trials and the probability of error will be smaller than αc.
Mislabelling b when performing n trials varying b happens
when b is in i’s hash domain, and probes on all n trials
are forwarded to the same next hop, which happens with
probability (1/|Ni|)n−1. The probability of misclassification
is then given by the probability that we mislabel any bit in B:

Pmiss(i, n,B) = 1−

[
1−

(
1

|Ni|

)n−1]|B|
.

To bound Pmiss(i, n,B) below 1− αc we set

n =

⌈
− log|Ni|

(
1− α

1
|B|
c

)⌉
+ 1, (1)

To classify an interface i with confidence αc = 0.95 when
|B| = 52 and |Ni| = 2, MCA first sends up to 9 probes to
check if i is a per-packet load balancer and, if not, performs
up to 10 trials (up to 20 probes) for each bit b ∈ B.

C. Optimizations for Searching Flow Identifiers

In this subsection, we discuss the existing approach (base-
line) for searching for new flow identifiers [19] and optimiza-
tions to reduce probing cost.

s

a1 a2

b2b1 b3

c1 c2 c3

Figure 2: Example toplogy.

a) Problem: MDA and MCA need to generate a number
of probes with varying flow identifiers through each interface
i in a route to explore i’s next hops and, if load balancing is
identified, i’s hash domain. Consider the MDA probing process
for the route in Figure 2. MDA will send 17 probes2 varying
flow identifiers through s to identify s’s next hops a1 and a2
(assuming both are found). To send a probe through i requires
that MDA first check that the probe’s flow identifier reaches i.
MDA will also send 17 probes varying flow identifiers through
a1 to identify a1’s next hops b1 and b2. Any flow identifier
MDA knows will reach a1 from previous probes can be reused.
However, MDA will need to send additional search probes to
obtain a total of 17 identifiers that actually reach a1.

b) Randomized search (baseline): New flow identifiers
that reach a given interface are found by trial and error,
and can amount to a significant fraction of the probing
cost. The probability that a given flow identifier follows a
branch segment β = [i1, i2, . . . , i|β|], assuming each inter-
face performs load balancing independently, is Pbranch(β) =∏

1≤k<|β| Pnext(ik, ik+1). The probability that a flow identi-
fier that goes through interface i at radius ri also goes through
interface j at radius rj > ri is given by

P (i, j) =
∑
β

Pbranch(β), for all branches β between i and j.

For example, in Figure 2, where we assume all interfaces
distribute flows uniformly, P (s, b1) = 1

2
1
2 and P (s, b2) =

1
2
1
2 + 1

2
1
2 . The average number of trials to find a new identifier

that reaches i from s is 1/P (s, i).
c) Reusing flow identifiers for identification: When

searching for new flows that reach an interface i in order
to enumerate its next hops, classic MDA will try new flow
identifiers from the source s. Alternatively, we propose the
reuse of flow identifiers sent to previous hops. We define a
flow identifier φ as reusable if it has been sent to some radius
smaller than i’s radius and has not yet been sent to i’s radius.
For each flow identifier φ, we define the interface with the
highest radius φ is known to reach as tip(φ). For each reusable
flow identifier φ, we estimate the probability that it will reach
interface i ∈ h as P (tip(φ), i).

We try reusable flows in order of decreasing probability to
reach i. Let Ai denote the set of ancestors of interface i in i’s
outermost diamond. In Figure 2, Ac1 = {s, a1, a2, b1, b2}. The
optimum flow trial order for finding new flows through c1 is
given by P (b1, c1) = 1

2 > P (a1, c1) = 5
12 > P (b2, c1) = 1

3 >

2We consider a confidence level αd = 0.95, which implies that MDA will
send a maximum of 9, 17, or 24 probes through an interface that has one,
two, or three next hops, respectively [6].

4

P (s, c1) = 7
24 . When searching flows through c1, MCA will

not reuse any flow φ with tip(φ) = a2, as these flows have a
lower chance, 1

24 , to reach c1 than new random flow identifiers
from the source (counted as a special case of reusable). Given
that route measurement proceeds hop-by-hop and all radii up
to i have been probed prior to identifying i’s next hops, Ai and
probabilities P (a, i) of reaching i from all ancestors a ∈ Ai
can be computed backwards from i in time O(|Ai|).

d) Searching sequence for identification: When identi-
fying next hops of interfaces at a hop h, MDA may need to
find a different number of new flows through each interface
i ∈ h. The total number of trials required depends on the
order in which we try flows. Let Mh[i] denote the fraction of
new flow identifiers missing for interface i ∈ h relative to the
total over h, and Mh the corresponding vector over all i. To
minimize the total number of trials across h, we issue a probe
with a flow identifier that best matches Mh. More precisely,
for each trial, we select the identifier φ over all reusable flows
that maximizes the utility

U(φ) =
∑
i∈h

Mh[i]P (tip(φ), i). (2)

We update Mh and recompute the optimal φ after each trial.
Example: Consider that MDA needs to find 1, 2, and 3

new flow identifiers through c1, c2, and c3, respectively. Then
Mh[c1] = 1

6 ,Mh[c2] = 2
6 , and Mh[c3] = 3

6 , and the flow reuse
order is given by the utilities of available tips: denote Φx any
flow φ such that tip(φ) = x, then U(Φa1) = 0.29 < U(Φs) =
U(Φb2) = 0.33 < U(Φa2) = 0.37 < U(Φb3) = 0.42.

e) Varying a bit value for classification: After identifying
next hops, MCA needs to send probes with flow identifiers φ
and φ′ that differ for a single header bit through an interface
i to classify its behavior. It is potentially onerous to find
enough of such φ′, however here the fact that LBs on the
route can be of different types, usually seen as a classification
burden, can be exploited to obtain a supply of φ′ efficiently.
This optimization provided the most significant gains in our
experiments, and works as follows.

Any flow identifier φ′ that overwrites a header bit b in φ
is guaranteed to also traverse i if b does not overlap the hash
domains of LBs in the branch taken by φ to reach i. For
such bits, MCA can generate a φ′ flow identifier through an
interface i from any known flow identifier φ without trials.
This implies that bits that are seldom used for load balancing
incur a known, fixed probing overhead given by Eq. (1).

The same property can be used when hash domains H of
all LBs in a branch β are identical. In these cases, we can
generate new flow identifiers by overwriting all bits in B \H
in flows known to reach i through β, and the new flows are
guaranteed to also reach i. This property allows us to repurpose
flow identifiers generated during the next hop identification
phase, each with a distinct value over H, into probes useful
for classifying i’s hash domain.

Consider that s and a1 in Figure 2 perform per-destination
load balancing. Consider MCA knows flows φ1, φ2, . . . , φk
reach b1 through s and a1. We can generate flow identifiers

that reach b1 and vary a bit b not in the destination address by
picking, e.g., φ1, and overwriting b. We can also generate k
flow identifiers that reach b1 and vary only the destination
address by overwriting all fields other than the destination
address in φ1, φ2, . . . , φk, for example with a fixed value.

D. Varying a Field Value for Classification

We have yet to address the question of the choice of B. It is
potentially highly onerous to select a large set and determine
each hash domain to bit resolution as described above, as each
bit requires up to n trials. However, it is possible to work at the
level of header fields instead. LB discovery is unchanged: the
hash domains are still general, we simply set B to the union
of the header fields of interest. For LB classification, the same
algorithms work unmodified by operating on F instead of B
(F was defined in the first paragraph of §IV as the set of
packet header fields that overlap B). The end result is simply
to report only at field granularity: i.e., the fields which have
been found to intersect each hash domain.

E. Operational Considerations

MDA can identify, and MCA can classify, routers that load
balance traffic over visible MPLS tunnels [25], [26], that is
those that reuse the probe’s TTL field value and whose router’s
ICMP time exceeded responses include the MPLS label stack.
MDA can identify load balancing (but not the intermediate
hops) and MCA can (partially) classify load balancing over
invisible MPLS tunnels when, (i) probes arrive at different
interfaces at the router where the invisible MPLS tunnels end,
and (ii) the router originates ICMP time exceeded replies using
different IP addresses.

Some approaches to load balancing include the TTL in the
hash domain [24]. These mechanisms make it impossible to
control the branches a flow identifier will follow, as traceroute
cannot function without varying probe TTL.

When varying the last bits of the destination address inside
the destination’s AS, MCA probes may discover subnets other
than the destination’s [27]. However, MCA only finally reports
interfaces found inside the destination AS that are observed
on probes targeting the original destination.

V. MCA IMPLEMENTATION

We implement MCA in a command-line tool to identify
and classify load balancers. Our implementation supports
TCP, UDP, and ICMP measurements using both IPv4 and
IPv6. It supports detection and classification covering bits
in the DSCP, traffic class, flow label, destination address,
source port, destination port, and ICMP checksum fields. Our
implementation allows control of 10 parameters, including the
confidence levels αd and αc, probing rate, timeouts, number
of retries, output format, and halting conditions.

We also implement Route Explorer, a front-end for MCA
measurements, which allows inspection probes and responses,
and provides graphical visualizations integrating metadata
such as IP-to-AS mapping and CAIDA’s AS-rank [28], [29].
We make our tools and dataset (§VI) publicly available [30].

5

Table I: Dataset summary
Number of traces

Platform VPs Period IPv4 IPv6 ASes
UFMG 1 2018-08-21–2018-09-06 11040 13524 1217
Linode [38] 6 2018-08-21–2019-03-01 182676 166968 5858
Vultr [39] 6 2018-08-21–2019-03-01 211800 182460 6567
DOcean [40] 7 2018-08-21–2019-03-01 246984 222564 6601
Ark [41] 11 2018-08-21–2019-04-27 395388 325512 8051
All 31 2018-08-21–2019-04-27 1047888 911028 10075

VI. DATASET

We deploy MCA in 31 vantage points (VPs) in 6 platforms
(cloud providers, monitoring testbeds, and one university) that
provide IPv4 and IPv6 connectivity and that allow crafting
and sniffing packets using Scapy [31]. The vantage points are
spread across 16 countries in 5 continents. Table I summarizes
our vantage points and dataset.

We run MCA toward a list of 19,866 IPv4 and 16,674
IPv6 addresses built by (i) resolving A and AAAA DNS
records for domains on three Internet ‘toplists’ [32]–[34], and
(ii) choosing representative addresses from ISI’s IPv4 Internet
census data from Sep. 2018 [35] and Gasser et al.’s IPv6 hitlist
from Jan. 2019 [36]. Our IPv4 destinations are distributed in
4,388 ASes (61% in stub ASes), and our IPv6 destinations are
in 8,103 ASes (50% in stub ASes). Destination ASes include
all Tier-1 ASes and 95% of ASes with more than 500 indirect
customers (as inferred by CAIDA [37]). We find the top 50
ASes with the most addresses are mostly large content and
cloud infrastructure providers, and concentrate 42.2% of IPv4
and 20.7% of IPv6 destinations.

We run six measurement campaigns to cover all combina-
tions of IP protocol (v4, v6) and transport (TCP, UDP, and
ICMP). In each run, we set FIPv4 = {destination IP, destination
port/ICMP checksum, DSCP} and FIPv6 = {destination IP,
destination port/ICMP checksum, flow label, traffic class} to
cover currently understood standard LB types [20] as well as
more general but still reasonable hash domains for novelty.

We augment our MCA measurements with IP-to-AS map-
ping information from Team Cymru [28], reverse DNS entries
(PTR records), and network types from PeeringDB [42].

VII. IMPACT OF OPTIMIZATIONS ON PROBING COST

MCA requires additional probes for classifying the LBs,
which further increases MDA’s high probing costs. In this sec-
tion we evaluate this cost with and without the optimizations
introduced in §IV-C. We show that our optimizations save a
significant fraction of probes, particularly for classification and
complex LB configurations, without loss of accuracy.

We define the probing cost as the total number of packets
for detecting and classifying LBs. Probing cost is a function
of route length, the degree of load balancing, and the sequence
of random flow identifiers generated during the identification
and classification phases.

The comparison of probe cost with and without optimiza-
tions is challenging experimentally. Rate limiting implies
each measurement takes several seconds, and Internet paths
may change over time. These factors combine to make it
impractical to measure the same path thousands of times when

0 200 400 600 800 1000
Average number of probes

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

Classification (optimized)
Detection (optimized)
Total (optimized)
Total (baseline)

Figure 3: Probing cost for all
outermost diamonds

0.80 0.85 0.90 0.95 1.00
Fraction of probes (opt/baseline)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds IPv4

IPv6

Figure 4: Normalized
probing cost savings

estimating its average probing cost. Instead, we compute the
average probing cost using trace-driven simulations. For each
route measurement in our dataset, we simulate the MCA with
and without optimizations until the 95% confidence interval
around the average probing cost of each outermost diamond
is below ±1 probe. We hash flow identifiers using SHA-256.

Figure 3 shows the distribution of the average number
of probes issued by MCA for all outermost diamonds
in our dataset. The ‘total (optimized)’ line adds the cost
of ‘detection’ and ‘classification’ with our optimizations
applied. We first note that MCA’s classification incurs a
probing cost that is of the same order of magnitude as that
of detection, and often significantly less, making MCA a
practical addition to traceroute. When using our optimizations,
classification amounts to 34% of the total probing cost of IPv4
measurements and to 39% of IPv6 measurements, on average.

Comparing the total probing cost with and without our
optimizations (optimized vs. baseline) we observe savings that
are small in this average view, with differences visible only
around complex LBs that require a large number of probes.
This is because the optimizations only apply to nested LBs,
and incur more savings on complex diamonds, which also
require more probes.

To enable the benefits to be better seen, Figure 4 shows the
distribution of the total optimized MCA cost normalized by the
number of probes sent by the unoptimized MCA (baseline) for
IPv4 and IPv6 outermost diamonds. Our optimizations provide
no savings for the 73% of IPv4 and 76% of IPv6 diamonds
that have no nested LBs (x = 1). For the remaining diamonds
with nested LBs, our optimizations provide savings around
5–15% (region between 0.85 ≤ x ≤ 0.95).

Our optimizations provide only modest probe savings for
detection with, on average, 2.8% less probes for IPv4 and 0.7%
for IPv6. For classification, the savings are higher: reducing
classification costs by 11% for IPv4 and 18% for IPv6 routes.
Savings for classification for IPv6 are higher than for IPv4
because our MCA executions included four header fields for
IPv6 and three for IPv4, and more fields means opportunities
to apply optimization. In measurement campaigns covering
more fields, savings would be higher than reported here. In
total, we estimate by simulation that the optimizations reduce
the total probing cost for routes in our datasets by 6% for

6

0 5 10 15 20 25 30
Total load balancers per route

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 ro

ut
es

IPv6 TCP
IPv4 TCP

Figure 5: Number of load
balancers per route

IPv4 IPv6
UDP TCP ICMP UDP TCP ICMP

Per-flow 69.6% 69.8% 1.5% 77.6% 78.5% 0.3%
Per-dest 24.4% 24.1% 94.2% 13.3% 13.5% 90.1%
Per-app 1.8% 2.1% 0.0% 0.9% 0.8% 0.0%
Per-packet 0.1% 0.1% 0.1% 0.1% 0.1% 0.3%
Per-flow + FL — — — 2.9% 2.4% 0.0%
Per-dest + FL — — — 0.2% 0.3% 3.2%
Other 2.3% 2.6% 2.7% 3.2% 2.8% 3.9%
Not classified 1.8% 1.4% 1.5% 1.7% 1.6% 2.2%
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Prevalence 74.9% 74.2% 72.9% 56.1% 55.8% 55.4%

Table II: Breakdown of load balancer classifications and prevalence by protocol

IPv4 and 8% for IPv6 for the default MCA configuration.
Although our optimizations provide only single-digit savings,
implementations would benefit from integrating them as they
have no impact on accuracy and apply to all measurements.

VIII. CHARACTERIZATION OF LOAD BALANCING

We characterize IPv4 and IPv6 load balancing on the Inter-
net. We study the prevalence of LBs (§VIII-A), identify com-
mon hash domains and classes of LB behavior (§VIII-B), and
quantify routers overwriting packet header fields (§VIII-C).
Finally, we revisit previous work and discuss the evolution of
load balancing and path diversity (§VIII-D).

A. Occurrence of Load Balancing

We provide an overview of load balancing observed in
our measurements. Linode, Digital Ocean, some networks
hosting Ark nodes, and UFMG’s provider employ LBs in
their networks. All paths from these vantage points traverse
at least one LB. Unless otherwise noted, we report results on
load balancers identified outside the vantage point’s network
to avoid biasing results.

a) Load balancing is prevalent: Figure 5 shows the
distribution of the number of LB interfaces on IPv4 and IPv6
routes. Even when ignoring load balancing in the vantage
point’s network, we find that 74% of IPv4 routes and 56% of
IPv6 routes traverse at least one LB, and some traverse many
more. When considering LBs in the origin network, we find
that 86% of IPv4 routes traverse at least one LB, a fraction
similar to that observed in 2009 [3], and that 77% of IPv6
routes traverse at least one LB, not significantly larger than
the 74% observed in 2016 [20]. These results indicate the
extent of traffic engineering used in the Internet and the need
for considering LBs in Internet measurement efforts. Even
though our measurements are collected from different vantage
points to different destinations than measurements in previous
work, and thus are not directly comparable, the observations
are consistent and indicate prevalence of load balancers.

Our results miss load balancers that use fields not included
in F and may misidentify path changes as load balancing.
We expect these errors to have minor impact on the results:
Table II indicates few load balancers employ nonstandard be-
havior (lines with “FL” and “Other”), and MCA measurements
are fast compared to usual route durations [22].

b) IPv4 load balancing is more widespread: We find
55% of ASes traversed in our IPv4 measurements employ
IPv4 load balancing; compared to 41% in IPv6 measurements.
Moreover, although 58% of ASes that appear in both IPv4
and IPv6 measurements employ both IPv4 and IPv6 load
balancing, ASes more often employ IPv4 load balancing
exclusively. We find that 82% of the ASes that employ IPv6
load balancing and are traversed in IPv4 measurements employ
IPv4 load balancing, but that only 66% of the ASes that
employ IPv4 load balancers and are traversed in IPv6 mea-
surements employ IPv6 load balancing. These results indicate
richer traffic engineering in IPv4 than in IPv6, possibly due to
IPv4 still carrying most traffic or simply due to being around
(and engineered) for longer.

We find that load balancing is applied similarly across all
transport protocols. The ‘prevalence’ row in Table II shows
the fraction of routes in the dataset with load balancing, and
that it does not depend on transport protocols.

B. Classes of Load Balancing Behavior

As a measure of the accuracy of our classifications, we
check whether multiple measurements of the same LB identify
identical hash domains. When using TCP probes, we find that
9.7% of IPv4 and 8.8% of IPv6 LBs are measured multiple
times (this ratio is similar across TCP, UDP, and ICMP), and
we infer that 98.1% of these LBs have the same hash domain,
which is within our 95% confidence threshold.

Table II shows the percentage of LBs of each class per
protocol for each of the most common types of load balancing
(§III) in Internet routes, ignoring LBs in the vantage point’s
network. As explained before, load balancing is more prevalent
on IPv4 routes and there is no significant difference in preva-
lence between transport protocols. We observe that per-flow
LBs are the most common, followed by per-destination. We
observe a few LBs considering only transport port numbers
in their hash domain (we found this can be configured in
RouterOS as “per-application load balancing” [43]) and some
IPv6 load balancers employing the flow label field [44].

We note that existing MDA implementations would cor-
rectly identify and classify only per-flow, per-destination, and
per-packet load balancers. In particular, existing implementa-
tions would misclassify per-application load balancers as per-
flow, and entirely miss load balancing using the DSCP, traffic
class, and flow label fields.

7

a) Load balancing behavior is improving: Per-packet
load balancing is at an all-time low relative to previous
characterizations. As per-packet LBs induce packet reordering
and TCP performance degradation, this is a positive trend.

We find few LBs whose hash domains include the ICMP
checksum field (shown as per-flow in Table II). Augustin et
al. [3] reported a considerable decrease in the number of
routers performing per-flow load balancing for ICMP between
2006 and 2009; we find this trend has continued, with an
all-time low of IPv4 LBs considering the ICMP checksum
field (3.2% of load balancers, down from 20% in 2009).
This behavior may follow from more mature implementations
defaulting to per-destination load balancing for ICMP packets.

We find that an average of 2.8% of IPv6 LBs consider the
flow label field in their hash domain, when measuring with
TCP. We also observe the use of flow label in conjunction with
per-flow or per-destination load balancing classes: we classify
2.7% of IPv6 LBs as having this behavior. A significant
fraction (85%) of LBs including the flow label in their hash
domains are in content and infrastructure providers’ networks
(e.g. Facebook’s AS32934 and Google’s AS15169), which
adopt IPv6 and rely on advanced traffic engineering [15], [16].

b) Traffic engineering triggers load balancing: IPv6’s
traffic class and IPv4’s DSCP fields serve a similar purpose of
classifying packets. Although their use is not widespread we
identified a non-negligible number of LBs with the IPv6 traffic
class (2.7%) and IPv4 DSCP fields (2.6%) in their hash do-
mains when measuring with TCP (the default in JunOS [44]).

c) Classification errors: When measuring with TCP,
MCA failed to classify 1.4% IPv4 and 1.6% IPv6 load bal-
ancers; i.e., MCA detected load balancing, but did not observe
load balancing during the classification phase. Possible reasons
for this include measurement errors (possibly aggravated by
non-uniform load balancing) or hash domains that only trigger
load balancing when multiple fields are varied simultaneously.

C. Overriding of Packet Header Fields

One challenge when trying to identify and classify load
balancers whose hash domains include the DSCP, traffic class,
and flow label fields is that these fields may be overwritten by
intermediate routers and middleboxes [45]. Such overwriting
will interfere with identification and classification of load
balancers by preventing control of the field’s value.

We recover the values of the DSCP, traffic class, and flow
label fields received by each interface in a multi-route from
the probe headers encapsulated in router ICMP time-exceeded
responses. When we find an interface in a route that receives
a DSCP value, traffic class, or flow label field with a value
different from the expected value, we infer that the preceding
interface overwrites that field. For any overwritten field, we
identify whether it is overwritten with a fixed or variable value
by looking at multiple encapsulated probe headers. Note that
the expected values for DSCP, traffic class, and flow label
fields change after an interface that overwrites them with a
fixed value and become undetermined (which we consider as a
special value) after an interface that overwrites with a variable

B

C
E

F

I

J
M

D
G

H

K

L
N

A P

Q

R

T

U

S V XO

Figure 6: An example multi-route with two diamonds.

value. We identify interface overwriting behaviors proceeding
hop-by-hop starting from the vantage point.

We find that 4.1% of IPv4 interfaces overwrite the DSCP
field (0.7% with a variable value) and that 3.6% of IPv6
interfaces overwrite the traffic class field (0.7% with a variable
value). The 3.4% of interfaces that overwrite the DSCP and
2.9% that overwrite the traffic class field with a fixed value
prevent identification and classification of subsequent load
balancing including these fields in their hash domains: This
leads to an underestimation of load balancers using the DSCP
and traffic class fields reported in Table II. MCA tracks
interfaces that overwrite fields with variable values to avoid
incorrectly inferring per-packet load balancing if subsequent
load balancers include DSCP and traffic class in their hash
domains. We did not find a significant number of interfaces
overriding the IPv6 flow label field.

D. Diamonds and Branched Route Properties

In this section we characterize LB outermost diamonds
(called simply diamonds in this section) in Internet routes in
an attempt to better understand how LBs are used. Overall,
we find that IPv4 diamonds are more complex, traversing a
higher number of LBs and resulting in greater path diversity.

We revisit Augustin et al.’s original diamond metrics and
consider new ones [3]. Figure 6 shows a route with two dia-
monds. Augustin et al. [3] defined the length as the number of
edges in the longest branch across the diamond; the asymmetry
as the maximum length difference between any sequence of
interfaces across the diamond (a symmetric diamond has zero
asymmetry); the min-width of a diamond as the number of
edge-disjoint sequences of interfaces across the diamond; and
the max-width as the maximum cardinality of any hop. The
min- and max-width give lower and upper bounds on route
diversity. We define the depth of a diamond as the maximum
number of LBs traversed by any of its branches. In Figure 6,
diamond B–O is symmetric, has length 5, min-width 2, max-
width 4, and depth 2; diamond P–V has asymmetry 1, length
3, min-width 3, max-width 3, and depth 1. We have compiled
a list of illustrative branched route measurements, which can
be interactively inspected in Route Explorer [30].

a) Diamonds are similar across transport protocols:
We do not observe significant differences between diamonds
measured with TCP, UDP, or ICMP (not shown). In this section
we report on diamonds measured using TCP probes. For
most metrics, we observe no significant differences between
diamonds measured using IPv4 or IPv6, or between diamonds
from LBs with different hash domains; in the following para-
graphs we point out the significant differences we identified.

8

2 4 6 8 10 12 14 16
Length

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
fra

ct
io

n
of

 d
ia

m
on

ds

Per-dest (IPv4/TCP)
Per-flow (IPv4/TCP)

Figure 7: Diamond Length

2 4 6 8 10 12 14 16
Min-width

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

IPv6 TCP
IPv4 TCP

Figure 8: Diamond min-width

2 4 6 8 10 12 14 16
Max-width

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

IPv6 TCP
IPv4 TCP

Figure 9: Diamond max-width

1 2 3 4 5
Depth

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

IPv6 TCP
IPv4 TCP

Figure 10: Diamond depth

b) Diamond length and asymmetry: Figure 7 shows
the distribution of diamond lengths for per-flow and per-
destination load balancers. We find per-destination diamonds
to be shorter than per-flow diamonds, as previously observed
by Augustin et al. [3]. We also find that diamonds are usually
short (80% of diamonds span at most 5 hops) and that IPv6
diamonds are shorter than IPv4 diamonds (not shown).

We observe asymmetry to be rare and small for both IPv4
and IPv6 (83% of the diamonds are symmetric), following
previous results on diamond asymmetry [3] (not shown).

c) Diamond width and route diversity: Figures 8 and 9
show the distributions of min-width and max-width for dia-
monds in our dataset. We observe the min-width to be small,
with 86% of diamonds having only two edge-disjoint branches.
As previously observed by Augustin et al. [3], we find that
diamonds are narrow, i.e., their max-width is small, and that
IPv4 diamonds are slightly wider than IPv6 diamonds. We also
observe that wide and long IPv6 diamonds are considerably
less common than in IPv4.

The majority of LBs (80% for IPv4 and 82% for IPv6)
have two next hops (not shown). We find less than 1% of
LBs have more than 16 next hops. This may be a limitation
of router implementations; e.g., Juniper’s JunOS limits routers
performing ECMP to 16 next hops [44].

d) Number of LBs and diamond depth: We find that
diamonds usually have few LBs, but a few diamonds have
more than 20. Diamonds often have between 1 and 3 LBs,
which often appear in a symmetric fan-out pattern as that of
routers B, C, and D in Figure 6.

Figure 10 shows the distribution of diamond depth in our
dataset. IPv4 diamonds have slightly more LBs and higher
depth than IPv6 diamonds. Most diamonds have depth 1 or 2.
We also find that the difference between min- and max-width
is correlated with the diamond depth: 86% of the diamonds
with a max-width of 8 or larger have a depth of 2 or more.

IX. RELATED WORK

Traceroute applications and limitations: Network adminis-
trators use Internet route measurements to troubleshoot fail-
ures [46], routing anomalies [47]–[49], bad performance [50],
and misconfigurations [51]. Researchers study properties of
Internet routes to propose new models and develop solutions to
address limitations [37], [52]–[55]. Previous work has shown

that traceroute measurements may be incomplete, e.g., due
to routers that rate-limit responses or that fail to respond
to probes with ICMP Time Exceeded messages; that do not
decrement the TTL field of packets; that encapsulate packets
using MPLS; or that respond to probes using off-path inter-
faces [3], [56]–[58]. Load balancing, which our work improves
on, is another source of artifacts in traceroute measurements.
Load balancing measurement and characterization: MDA was
first conceived for the IPv4 Internet. IPv6 implementations
include Scamper [18] and a new version of Paris traceroute.
These implementations directly adapt MDA from IPv4 to
IPv6, with the same underlying assumptions. Although these
assumptions often hold (§VIII-B), we quantify how often and,
more importantly, provide a principled approach to more accu-
rately identify and classify both IPv4 and IPv6 LBs. Previous
work used MDA to characterize load balancing on the IPv4
[3], [19] and IPv6 Internet [20]. In this work, we use MCA to
revisit these results and show how load balancing evolved over
the years. More recently, MDA-lite [21] proposed lossy opti-
mizations to significantly reduce the probing cost for identify-
ing LBs. In this work, we provide complementary optimiza-
tions that further reduce probing cost without loss of accuracy.

X. CONCLUSION

In this paper we presented a more general model for load
balancing that considers that load balancers can use arbitrary
bits in packet header fields for load balancing. We designed
and implemented MCA, a probing algorithm that identifies and
classifies load balancing, alongside optimizations to reduce
its overall probing cost. MCA is practical, increasing overall
probing cost on top of existing techniques by only 34%, while
providing richer information.

We collected a large dataset to characterize load balancing
practices for all combinations of IP protocol version (v4 and
v6) and transport protocol (UDP, TCP, and ICMP). Our results
show load balancing is more prevalent and load balancing
strategies more mature than previously reported. We identified
that existing measurement tools cannot identify 4.7% of load
balancers, and will misclassify an additional 2.3%. Given the
rise of IPv6 traffic [14], [59], programmable data planes [9],
[10], and software-defined networking [7], [12], these per-
centages may increase and current tools become increasingly
inadequate over time.

9

REFERENCES

[1] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding Traceroute Anomalies with
Paris Traceroute,” in IMC, 2006.

[2] V. Jacobson, “traceroute,” 1989.
[3] B. Augustin, T. Friedman, and R. Teixeira, “Measuring Multipath

Routing in the Internet,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp.
830–840, 2011.

[4] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush, “From Paris to
Tokyo: On the Suitability of Ping to Measure Latency,” in IMC, 2013.

[5] F. Viger, B. Augustin, X. Cuvellier, C. Magnien, M. Latapy, T. Friedman,
and R. Teixeira, “Detection, Understanding, and Prevention of Trace-
route Measurement Artifacts,” Comput. Netw., vol. 52, no. 5, pp. 998–
1018, 2008.

[6] D. Veitch, B. Augustin, T. Friedman, and R. Teixeira, “Failure Control
in Multipath Route Tracing,” in INFOCOM, 2009.

[7] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rex-
ford, and L. Vanbever, “An Industrial-scale Software Defined Internet
Exchange Point,” in NSDI, 2016.

[8] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
Traffic Splitting on Commodity Switches,” in CoNEXT, 2015.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[10] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Bal-
akrishnan, G. Varghese, N. McKeown, and S. Licking, “Packet Transac-
tions: High-Level Programming for Line-Rate Switches,” in SIGCOMM,
2016.

[11] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, M. Robin,
A. Siganporia, S. Stuart, and A. Vahdat, “BwE: Flexible, Hierarchical
Bandwidth Allocation for WAN Distributed Computing,” in SIGCOMM,
2015.

[12] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-deployed Software
Defined Wan,” in SIGCOMM, 2013.

[13] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-driven
WAN,” in SIGCOMM, 2013.

[14] Google, “IPv6 Adoption Statistics by Google,” 2019.
[15] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha,

I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng, “Engineering
Egress with Edge Fabric: Steering Oceans of Content to the World,” in
SIGCOMM, 2017.

[16] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan,
A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney,
D. Trumic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and
A. Vahdat, “Taking the Edge off with Espresso: Scale, Reliability and
Programmability for Global Internet Peering,” in SIGCOMM, 2017.

[17] Z. Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Mahajan, and
B. Christian, “Optimizing Cost and Performance in Online Service
Provider Networks,” in NSDI, 2010.

[18] M. Luckie, “Scamper: a Scalable and Extensible Packet Prober for
Active Measurement of the Internet,” in IMC, 2010.

[19] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced
paths in the internet,” in IMC, 2007.

[20] R. Almeida, O. Fonseca, E. Fazzion, D. Guedes, W. Meira, and Í. Cunha,
“A Characterization of Load Balancing on the IPv6 Internet,” in Proc.
PAM, 2017.

[21] K. Vermeulen, S. D. Strowes, O. Fourmaux, and T. Friedman, “Multi-
level MDA-Lite Paris Traceroute,” in IMC, 2018.

[22] I. Cunha, R. Teixeira, D. Veitch, and C. Diot, “DTRACK: A System
to Predict and Track Internet Path Changes,” IEEE/ACM Trans. Netw.,
vol. 22, no. 4, pp. 1025–1038, 2014.

[23] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, “RFC 6437 - IPv6
Flow Label Specification,” 2011.

[24] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “WCMP: Weighted Cost Multipathing for Improved Fairness
in Data Centers,” in Proc. ACM EuroSys, 2014.

[25] B. Donnet, M. Luckie, P. Mérindol, and J. Pansiot, “Revealing MPLS
Tunnels Obscured from Traceroute,” SIGCOMM Comput. Commun.
Rev., vol. 42, no. 2, pp. 87–93, 2012.

[26] Y. Vanaubel, P. Mérindol, J. Pansiot, and B. Donnet, “A Brief History
of MPLS Usage in IPv6,” in Proc. PAM, 2016.

[27] R. Beverly, A. Berger, and G. Xie, “Primitives for Active Internet
Topology Mapping: Toward High-Frequency Characterization,” in IMC,
2010.

[28] Team Cymru, “IP to ASN Mapping,” 2019.
[29] CAIDA, “AS Rank,” 2019. [Online]. Available: http://as-rank.caida.org/
[30] R. Almeida, I. Cunha, R. Teixeira, D. Veitch, and C. Diot, “Multipath

Classification Algorithm (MCA) Code and Dataset,” 2019. [Online].
Available: https://www.dcc.ufmg.br/∼rlca/mca/

[31] P. Biondi, “Scapy Documentation.” [Online]. Available: https://scapy.net
[32] Alexa, “Top Global Sites Ranking,” 2019.
[33] Cisco, “Umbrella Popularity List,” 2019.
[34] Majestic, “The Majestic Million,” 2019.
[35] X. Fan and J. Heidemann, “Selecting Representative IP Addresses for

Internet Topology Studies,” in SIGCOMM, 2010.
[36] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczynski, S. D.

Strowes, L. Hendriks, and G. Carle, “Clusters in the Expanse: Under-
standing and Unbiasing IPv6 Hitlists,” in IMC, 2018.

[37] M. Luckie, B. Huffaker, K. Claffy, A. Dhamdhere, and V. Giotsas, “AS
Relationships, Customer Cones, and Validation,” in IMC, 2013.

[38] Linode. [Online]. Available: https://www.linode.com/
[39] Vultr. [Online]. Available: https://www.vultr.com/
[40] DigitalOcean. [Online]. Available: https://www.digitalocean.com/
[41] CAIDA, “Archipelago (Ark) Measurement Infrastructure,” 2019.
[42] PeeringDB. [Online]. Available: https://www.peeringdb.com
[43] Mikrotik Wiki, “ECMP Load Balancing With Masquerade,” 2016.
[44] Juniper, “Configuring Per-Packet Load Balancing.” [Online].

Available: https://www.juniper.net/documentation/en US/junos/topics/
usage-guidelines/policy-configuring-per-packet-load-balancing.html

[45] J. Jaeggli, “IPv6 Flow Label: Misuse in Hashing,” RIPE Labs Blog.
[46] E. Katz-Bassett, C. Scott, D. R. Choffnes, I. Cunha, V. Valancius,

N. Feamster, H. V. Madhyastha, T. Anderson, and A. Krishnamurthy,
“LIFEGUARD: Practical Repair of Persistent Route Failures,” in SIG-
COMM, 2012.

[47] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-wide
Traffic Anomalies,” in SIGCOMM, 2004.

[48] K. V. M. Naidu, D. Panigrahi, and R. Rastogi, “Detecting Anomalies
Using End-to-End Path Measurements,” in INFOCOM, 2008.

[49] F. Silveira, C. Diot, N. Taft, and R. Govindan, “ASTUTE: Detecting a
Different Class of Traffic Anomalies,” in SIGCOMM, 2010.

[50] P. Barford, N. Duffield, A. Ron, and J. Sommers, “Network Performance
Anomaly Detection and Localization,” in INFOCOM, 2009.

[51] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Minerals: Using
Data Mining to Detect Router Misconfigurations,” in Proc. of MineNet,
2006.

[52] V. Giotsas, M. Luckie, B. Huffaker, and K. Claffy, “IPv6 AS relation-
ships, cliques, and congruence,” in Proc. PAM, 2015.

[53] V. Giotsas, M. Luckie, B. Huffaker, and kc claffy, “Inferring Complex
AS Relationships,” in IMC, 2014.

[54] Í. Cunha, P. Marchetta, M. Calder, Y. Chiu, B. Schlinker, B. Machado,
A. Pescape, V. Giotsas, H. Madhyastha, and E. Katz-Bassett, “Sibyl: A
Practical Internet Route Oracle,” in NSDI, 2016.

[55] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iPlane: an Information Plane for
Distributed Services,” in OSDI, 2006.

[56] P. Marchetta, A. Montieri, V. Persico, A. Pescapé, Í. Cunha, and E. Katz-
Bassett, “How and How Much Traceroute Confuses Our Understanding
of Network Paths,” in Proc. LANMAN, 2016.

[57] M. Luckie, Y. Hyun, and B. Huffaker, “Traceroute Probe Method and
Forward IP Path Inference,” in IMC, 2008.

[58] R. Beverly, R. Durairajan, D. Plonka, and J. Rohrer, “In the IP of the
Beholder: Strategies for Active IPv6 Topology Discovery ,” in IMC,
2018.

[59] Facebook, “IPv6 Traffic Statistics by Facebook,” 2019.

10

