Measurement Methods for Fast and Accurate Blackhole Identification with Binary Tomography

Ítalo Cunha
Thomson and UPMC Paris Universitas

Renata Teixeira
CNRS and UPMC Paris Universitas

Nick Feamster
Georgia Tech

Christophe Diot
Thomson
Users can collaborate to identify failures

- Users may want to assess ISP performance
 - Rank ISPs to choose best quality of service
 - Blame them for failures

- Users have limited access to network resources, but
- Can collaborate to identify failures
 - Limited to end-to-end probes
Monitoring helps applications improve QoS

- Improve hardware and deploy applications on gateways

- Need monitoring to perform peer selection and overlay construction
 - Connectivity
 - Bandwidth and jitter for streaming
 - Latency for games

- Need end-to-end probes to maintain overlay
Operators monitor to ease troubleshooting

- Blackholes are challenging to troubleshoot
- Persistent failures that raise no alerts
 - Router software bugs or misconfiguration
 - Problems in other networks

- Blackholes are detected by loss of end-to-end connectivity
 - Need for end-to-end measurements
Network tomography is promising

Detects and locates failures
Tomography steps

Collect status of paths

Combine end-to-end statuses

Run tomography
Tomography is sensitive to inaccurate inputs!

Transient losses cause detection errors

Unsynchronized measurements cause inconsistency
Remove inaccuracies to reduce false alarms

- **Failure confirmation**
 - Minimizes detection errors
 - Differentiates transient losses from persistent failures

- **Failure aggregation**
 - Aggregates unsynchronized measurement
 - Trades delay for consistency
Method

- **Analytical models**
 - How fast can we run confirmation?
 - What are the shortest failures we can identify?

- **Controlled experiments on Emulab**
 - Tomography is hard to evaluate: no ground truth
 - Measure failure identification rate and false alarms
 - Validate the analytic models

- **Deployment on PlanetLab and an enterprise VPN**
 - Assess the usefulness of the techniques in practice
 - No ground truth, but can still compare number of alarms
Failure Confirmation
Dealing with probe losses

- We need low overhead and quick confirmation.

Approach: send extra confirmation probes
 - How many?
 - When?
How and when to send confirmation probes

- Bursty losses modeled as a two-state Gilbert model
 - Two parameters: path loss rate and average burst length
 - Loss bursts durations are exponentially distributed

- Periodic confirmation probes minimize detection errors

- Optimization models to calculate number of confirmation probes and spacing between them
 - Minimizing total confirmation time
 - Minimizing number of confirmation probes
PlanetLab measurement setup

- 200 PlanetLab nodes probing each other for 12 days

- Paths are probed every 60 seconds

Run two confirmation schemes simultaneously
 - 5 back-to-back probes
 - 10 probes spaced by 200 milliseconds
Effect of failure confirmation in practice

10, 5, and 3 spaced

5 probes

3 probes

back-to-back

1 probe

Detection errors
Failure Aggregation
Short failures are impossible to identify consistently

Very short failures

- **Cycle length**
- **Failure duration**
- **Detection Errors**

The relationship between failure length and cycle length:

\[
\frac{\text{failure length}}{\text{cycle length}}
\]

Higher ratio = higher consistency
Aggregation strategies

Basic aggregation
- After detecting a failure, measures all paths once and then runs tomography

Multi-Cycle aggregation (MC)
- Runs tomography only when n consecutive cycles have identical measurements

Multi-Cycle Noise-Tolerant aggregation (MC-Path)
- Runs tomography with paths down for n consecutive cycles
Putting everything together – real deployments

Number of alarms per day

<table>
<thead>
<tr>
<th></th>
<th>PlanetLab</th>
<th>Enterprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC</td>
<td>1500</td>
<td>20</td>
</tr>
<tr>
<td>MC</td>
<td>No alarm</td>
<td>1</td>
</tr>
<tr>
<td>MC-PATH</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>
Failure identification rate - Emulab

MC–Path
(n = 2)

Few false alarms

Rare false alarms

Identification Rate

Failure Length / Cycle Length
Summary

- Tomography algorithms need accurate inputs

- Failure confirmation
 - Differentiates transient losses from persistent failures
 - Minimizes the number of probes and delay

- Failure aggregation
 - Aggregates measurements from multiple vantage points
 - Trades delay for consistency
Thank you!
Confirmation removes false alarms – Emulab

Basic aggregation
Trading delay for higher consistency - Emulab

- Abilene topology and synthetic failures
- No confirmation: many detection errors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td>2.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cons.</td>
<td>0.914</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td>15.2</td>
<td>19.0</td>
<td>19.7</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>Cons.</td>
<td>0.981</td>
<td>0.998</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MC-PATH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td>6.92</td>
<td>10.0</td>
<td>13.0</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>Cons.</td>
<td>0.964</td>
<td>0.977</td>
<td>0.982</td>
<td>0.985</td>
<td></td>
</tr>
</tbody>
</table>
Putting it all together - Emulab

![Graph showing comparison of Basic, MC-Path (n=2), and MC (n=2) for Identification Rate and Total False Alarms against Failure Length / Cycle Length.](image)
Bursty losses modeled as a two-state Gilbert model

- Loss bursts durations are exponentially distributed
- \(\text{Prob}(\text{losing confirmation probe} \mid \text{previous probe lost}) \)
Short failures are impossible to identify consistently

- Failures shorter than one cycle
 - Cycle length
 - Time
 - Failure duration

- Failures shorter than two cycles

- Failures longer than two cycles
Detection errors can also create false alarms

Detection errors reduce consistency

\[
\text{information} = \frac{\text{failure length}}{\text{cycle length}}
\]

higher ratio = higher consistency
Future Work

- Tomography algorithms also need up-to-date topologies

- Develop confirmation and aggregation techniques for non-binary metrics like loss rate and bandwidth

- Deploy these techniques in conjunction with tomography algorithms to build a real-time system
Putting everything together - real deployments

<table>
<thead>
<tr>
<th></th>
<th>PlanetLab</th>
<th></th>
<th>Enterprise</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Conf.</td>
<td>Confirmation</td>
<td>No Conf.</td>
<td>Confirmation</td>
</tr>
<tr>
<td>BASIC</td>
<td>1500/day</td>
<td>1500/day</td>
<td>500/day</td>
<td>20/day</td>
</tr>
<tr>
<td>MC</td>
<td>No alarm</td>
<td>No alarm</td>
<td>1/day</td>
<td>1/day</td>
</tr>
<tr>
<td>MC-PATH</td>
<td>23/day</td>
<td>12/day</td>
<td>2/day</td>
<td>2/day</td>
</tr>
</tbody>
</table>