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Abstract. This paper addresses the problem of hosting multiple applications
on a provider’s virtualized multi-tier infrastructure. Building from a previous
model, we design a new self-adaptive capacity management framework, which
seeks to maximize the provider’s business objective. Our main contributions
are the more accurate multi-queue performance model, as well as the solution
of the associated complex optimization model. Our approachis evaluated via
simulation experiments with synthetic as well as realisticworkloads. The results
show that our solution is significantly more cost-effectivethan the approach it
is built upon, which uses a single-resource performance model, and a multi-tier
static allocation strategy.

Resumo. Este artigo aborda o problema de hospedar várias aplicaç̃oes numa
infra-estrutura virtualizada multi-camadas de um provedor. Partindo de um mo-
delo pŕevio, ńos projetamos um novo arcabouço auto-adaptativo de gerência de
capacidade, que procura maximizar o objetivo de negócio do provedor. Nossas
principais contribuiç̃oes s̃ao um modelo de desempenho multi-filas mais pre-
ciso, bem como a solução do complexo modelo de otimização associado. Nosso
métodoé avaliado atrav́es de simulaç̃ao com cargas sintéticas e realistas. Os
resultados mostram que nossa solução é significativamente mais eficiente que
o método do qual foi derivada, que usa um modelo de desempenho com uma
camada; e uma estratégia de alocaç̃ao est́atica multi-camadas.

1. Introdução
Serviços de Internet e Web geralmente recorrem a terceirização da infra-estrutura com-
putacional como uma alternativa financeiramente atrativa para hospedar seus serviços
[Ross and Westerman 2004]. Nesse cenário, o provedor de serviço assina contratos de
nı́vel de serviço (SLA) com um provedor de infra-estrutura. O provedor de serviçoimpõe
requisitos de qualidade, e o objetivo do provedor de infra-estrutura é encontrar a estratégia
mais eficiente para gerenciar seus recursos, compartilhados pelas aplicações hospedadas.

A gerência de capacidade dessa infra-estrutura se torna particularmente desafia-
dora devido a várias razões. Web-services atuais utilizam complexas e heterogêneas plata-
formas de serviço multi-camadas compostas de servidores HTTP, servidores de aplicação
e, talvez, um banco de dados. Além disso, heterogeneidade de aplicações e flutuações
da carga de trabalho [Chase et al. 2001] não podem ser eficientemente acomodadas com
estratégias estáticas de gerência de capacidade. Nessecenário, virtualização de recursos
[Barham et al. 2003, Whitaker et al. 2002] cria um ambiente mais custo-efetivo, através
da criação de máquinas virtuais (VMs) dedicadas a uma aplicação.

Novas cobranças dos provedores de serviço tornam mais complexa a construção
de estratégias custo-efetivas de gerência de capacidade. Existe um crescente interesse



no estabelecimento de contratos onde o pagamento é proporcional aos recursos realmente
utilizados [Wilkes et al. 2004]. Estes contratos devem prover garantias não só sobre a taxa
de processamento, mas também sobre o tempo de resposta observado para cada requisição
[Liu et al. 2005]. Esta última implica em garantias sobre a calda da distribuição do tempo
de serviço, ao contrário de requisitos tradicionais sobre amédiado tempo de resposta. Es-
tes requisitos implicam num aumento da complexidade dos contratos, modelos de negócio
e, por fim, soluções de gerência de capacidade mais sofisticadas.

Em [Abrahao et al. 2006], propomos uma solução para gerenciamento de capaci-
dade auto-adaptativa que aborda alguns dos desafios mencionados anteriormente. Nossa
solução combina um modelo de custo, construı́do a partir de um modelo de contrato de
dois nı́veis, um modelo de desempenho baseado em filas e um modelo de otimização que
maximiza o objetivo de negócio do provedor. Este artigo expande nosso trabalho prévio e
propõe um arcabouço de gerenciamento de capacidade significativamente mais eficiente
para sistemas virtualizados multi-camadas. Este arcabouc¸o assume que a infra-estrutura
fı́sica em cada camada é virtualizada, atribuindo uma máquina virtual local para cada
aplicação hospedada. Nesse caso, o modelo de desempenho representa cada máquina
virtual como uma fila separada, capturando assim o paralelismo inerente a plataformas
multi-camadas não capturado por modelos de camada única.

Nós comparamos nossas abordagens multi-camadas com nossomodelo anterior
de camada única e também com uma estratégia de alocaçãoestática multi-camadas.
Simulações com cargas de trabalho sintéticas e realistas são usadas para medir a eficiência
relativa das estratégias analisadas em vários cenáriosde interesse. Nossas principais con-
clusões são as seguintes. Primeiro, nossa abordagem multi-camada auto-adaptativa escala
razoavelmente bem para cenários práticos. Segundo, no caso de cargas pesadas e desba-
lanceadas, ganhos significativos de lucro são obtidos peloprovedor, se comparados com
alocação estática multi-camada. Terceiro, as imprecisões de desempenho introduzidas
pelo modelo de camada única levam a decisões de alocaçãomuito conservadoras. Em
conseqüência disso, a estratégia de camada única é inferior às abordagens multi-camadas
auto-adaptativas e estáticas em ordens de magnitude, mesmo quando as aplicações hos-
pedadas são homogêneas e possuem demandas balanceadas através das camadas.

Este artigo é organizado como segue. A seção 2 discute trabalhos relacionados.
Nosso ambiente virtualizado multi-camadas e modelo de custo sobre o qual nossas abor-
dagens são construı́das são descritos na seção 3. A seção 4 apresenta nosso arcabouço
auto-adaptativo. Resultados de simulação são apresentados na seção 5. Conclusões e
trabalhos futuros estão disponı́veis na seção 6.

2. Trabalhos Relacionados
Trabalhos prévios sobre gerência autônoma de capacidade diferem deste estudo pois não
se aplicam a ambientes multi-camada. Nosso trabalho prévio em [Abrahao et al. 2006]
combina um modelo de negócio de dois nı́veis, um modelo de desempenho baseado em
filas e um modelo de otimização para alocar dinamicamente acapacidade disponı́vel entre
as aplicações, maximizando o objetivo de negócio do provedor. Modelos com um único
centro de serviço, como filas M/M/1 e M/G/1, são usados paraprover estimativas do
tempo de resposta. Este trabalho estende os modelos prévios de desempenho e otimização
para arcabouços multi-camadas, aumentando sua precisãoe eficiência.

Uma pequena quantidade de trabalhos usam modelos analı́ticos para avaliar o de-
sempenho de sistemas para realocar recursos entre as aplicações sendo executadas. Em



[Almeida et al. 2006], nós consideramos um método que levaem consideração o custo de
operação da infra-estrutura (ex.: energia) no mecanismode gerência. O lucro total é uma
combinação do modelo de negócio e dos custos de operação. Em [Villela et al. 2004], os
autores apresentam métodos para alocar um número fixo de servidores entre um conjunto
arbitrário de usuários com diferentes cargas e contratosde serviço. Os autores assumem
uma arquitetura de uma camada representada por uma fila M/G/1. Nenhum dos trabalhos
anteriores é aplicável a sistemas com múltiplas camadas.

O trabalho em [Liu et al. 2001] faz alocação de recursos visando maximizar lucros
de um provedor de comércio eletrônico. Os autores assumemuma carga estática e não
consideram virtualização em sua avaliação. A ref. [Menascé and Bennani 2006] consi-
dera ambientes virtuais e desenvolve um método de gerência de capacidade para alocação
de CPUs, considerando alocação por prioridades e compartilhamento. Nenhum destes
dois métodos possui modelos de negócio, levando em consideração apenas métricas da
infra-estrutura, o que pode não estar de acordo com o objetivo do provedor (ex.: maximi-
zar lucro). Além disso, estes métodos não se aplicam a ambientes multi-camadas.

Um modelo analı́tico fechado baseado em filas para serviçosmulti-camadas é
apresentado em [Urgaonkar et al. 2005a]. Este modelo é gen´erico o suficiente para captu-
rar o comportamento de camadas com diferentes caracterı́sticas de aplicação e desempe-
nho. Porém, o foco do modelo é prever o tempo médio de resposta não tendo modelos de
otimização para alocação dinâmica de capacidade. Em [Urgaonkar et al. 2005b], os auto-
res apresentam um arcabouço de gerência de capacidade para aplicações multi-camadas
com cargas de sessão. Filas G/G/1 são utilizadas, mas a alocação de capacidade só é ob-
tida após uso de aproximações e limitações. Além disso, nosso método provê gerência
de capacidade alinhada com os objetivos de negócio do provedor, através de um flexı́vel
modelo de negócio.

3. Modelo de Infraestrutura

Esta seção descreve a plataforma alvo (seção 3.1) do nosso arcabouço de gerência de
capacidade auto-adaptativo e o modelo de custo (seção 3.2) sobre o qual é construı́do.

3.1. Plataforma de Hospedagem Virtual

Consideramos um cenário onde um provedor hospeda múltiplos serviços Web de ter-
ceiros. Serviços Web tı́picos são compostos de diferentes tipos de requisições, nós nos
referimos a cada tipo de requisição como umaclasse de aplicaç̃ao e assumimos que a
infra-estrutura hospedaN classes independentes oriundas de todos os serviços.

Nós consideramos que a infra-estrutura do provedor é composta de múltiplas (K)
camadas, caso comum para vários serviços Web. Cada camadaé responsável por uma
tarefa especı́fica no processo de servir uma requisição (ex.: camadas de apresentação,
aplicação e banco de dados). Camadas operam em paralelo e requisições visitam camadas
em seqüência. Isto é, uma requisição da classei entra na camadaj, é servida, e então deixa
o sistema com probabilidadepi,j (i = 1..N, j = 1..K, pi,K = 1).

Cada camada é hospedada emhardwarededicado, compartilhado por todas as
classes. Assumimos que cada camada roda um mecanismo de virtualização, como
o Xen [Barham et al. 2003] ou Denali [Whitaker et al. 2002], que provê diferenciação
de serviço e isolamento de desempenho para as classes hospedadas. A camada de
virtualização possibilita ao provedor aumentar ou diminuir dinamicamente a quantidade



Figura 1. Plataforma de Hospedagem de Serviços Virtualiza dos Multi-Camada

de recursos fı́sicos dedicados a uma classe numa camada, independentemente. Assim,
nós definimos o problema de alocação de capacidade como a determinação das frações de
capacidade fı́sica para cada classei em cada camadaj.

A plataforma de hospedagem considerada é mostrada na Figura 1. Sobre cada
camada da infra-estrutura fı́sica, uma camada de virtualização criaN máquinas virtuais
(VMs) isoladas, uma para cada classe. Cada requisição de uma classe de aplicação é
servida porK VMs dedicadas àquela classe. Assumimos que as VMs usam de algum
esquema de controle de admissão para evitar instabilidadee para garantir que os requisitos
de tempo de resposta serão atendidos. Focamos na alocação dinâmica de capacidade, com
o alvo de maximizar o objetivo de negócio do provedor, descrito a seguir.

3.2. Modelo de Custo

Em [Abrahao et al. 2006], propomos um esquema de cobrança que trata a alta variação
das cargas das aplicações em serviços online. Estes normalmente recebem moderadas
cargas de trabalho, mas ocasionalmente são subitamente inundados com uma grande so-
brecarga de requisições. Este fenômeno, conhecido comoflash crowd, gera congestio-
namento na infra-estrutura de serviço, causando atrasos significativos aos usuários. Em
contrapartida, nós propomos contratos com dois nı́veis derequisitos, a dizer, normal e
sobrecarregado. Se necessário, nossa abordagem pode ser estendida para mais de dois
nı́veis, especificando múltiplos alvos de desempenho. Na discussão seguinte, nos referi-
mos ao provedor de serviço comousúario, que estabelece um contrato com oprovedor
de infra-estrutura para hospedar seu serviço.

No modo de operação normal, usuários contratam um nı́velde serviço que satisfaz
suas necessidades durante a maior parte do tempo, enquanto no modo de operação sobre-
carregado, um nı́vel de serviço mais elevado é estabelecido, até onde o provedor tem um
incentivo para atribuir capacidade extra à aplicação para acomodar ocasionais picos de
carga. Do ponto de vista de negócio, esta abordagem pode servantajosa tanto para os
usuários, que pagam por capacidade extra apenas quando necessário, e para provedores,
que podem oferecer planos mais atrativos por operarem com maior flexibilidade.

Para o modo de operação normal, é definida uma taxa de processamentoXNSLA
i

para cada classei, que o provedor deve atender se a taxa de chegada de requisições for
alta o bastante. No caso de violações do contrato, o provedor concorda em devolver parte
da cobrança pelo serviço a seus usuários. Para o modo de operação sobrecarregado, o
contrato defineXSSLA

i ≥ XNSLA
i , a taxa de processamento limite até onde o usuário con-

corda em pagar uma recompensa ao provedor por servir requisições acima deXNSLA
i . Os

valores das penalidades e recompensas são calculados usando os parâmetros do contratoci



Figura 2. Gerenciamento de Capacidade Auto-Adaptativo (um a camada)

e ri por unidade de taxa de processamento abaixo ou acima deXNSLA
i , respectivamente.

A taxa de processamento válida é composta de todas as requisições cujo tempo de
resposta satisfaça o especificado pelo contrato. Nós consideramos um requisito sobre o
tempo de resposta que diz que o tempo de resposta das requisic¸ões da classei não pode
exceder um certo limiteRSLA

i mais do queαi × 100% das vezes. Em outras palavras,
P (Ri > RSLA

i ) ≤ αi, ondeRi é o tempo de resposta de uma requisição da classei.

4. Gerenciamento de Capacidade para Serviços Multi-Camadas

Aqui descrevemos nosso modelo auto-adaptativo para gerência de capacidade de serviços
multi-camadas. A seção 4.1 apresenta o arcabouço auto-adaptativo, construı́do a partir de
nosso modelo prévio de camada única [Abrahao et al. 2006].A nova contribuição mais
significativa reside no modelo de desempenho mais preciso e no modelo de otimização
estendido criado para usá-lo, apresentados nas seções 4.2 e 4.3, respectivamente.

4.1. Arcabouço Auto-Adaptativo

Nosso arcabouço auto-adaptativo propõe um modelo de operação do sistema baseado em
ciclos, mostrado na figura 2. A entidade central é ogerente de capacidade, que é chamado
periodicamente para alocar a capacidade disponı́vel em cada camada entre as aplicações
hospedadas, objetivando maximizar o objetivo de negócio do provedor. Nos referimos ao
intervalo entre intervenções consecutivas comointervalo de controle.

No final de cadaintervalo de controle, o gerente de capacidade recebe uma pre-
visão da carga de trabalho esperada para cada aplicação no próximo intervalo bem como
os requisitos do contrato, os tempos médios de serviço (demandas) e das probabilidades
de roteamento de cada classe,pi,j. Esses parâmetros podem ser estimados num ambiente
pré-produção como detalhado em [Urgaonkar et al. 2005a], e são usados para compu-
tar a fração da capacidade disponı́vel em cada camada que deverá ser atribuı́da a cada
aplicação. Eles são também usados para estimar a fraç˜ao das requisições previstas que
podem ser aceitas no sistema sem violar limitações de capacidade. A nova alocação de
capacidade é então enviada para a camada de virtualizaç˜ao, que atualiza o mapeamento
de recursos.

Os intervalos de controle podem ter duração fixa ou variável, dependendo das ca-
racterı́sticas do sistema e da estabilidade das cargas. Suaduração mı́nima é restringida
pelo tempo que o gerenciador de capacidade gasta para reconfigurar o sistema. Estima-
tivas futuras da carga de trabalho são fornecidas por um módulo previsor de carga que
implementa algum método de previsão existente [Abraham and Ledolter 1983], e que um
mecanismo de controle de admissão (como os discutidos em [Perros and Elsayed 2003])



ŚIMBOLO DESCRIÇÃO

XNSLA
i Taxa de processamento válida necessária da classei no modo de

operação normal.
XSSLA

i Taxa de processamento válida máxima da classei no modo de operação
sobrecarregado.

RSLA
i Requisito de tempo de resposta da classei (seg).
αi Limite superior na probabilidade do tempo de resposta exceder RSLA

i

para uma requisição da classei.
ci Valor da penalidade por unidade de taxa de processamento da classei

abaixo deXNSLA
i .

ri Valor da recompensa por unidade de taxa de processamento da classei
acima deXNSLA

i .
N Número de classes hospedadas (VMs em cada camada).
K Número de camadas.
νi,j Máxima utilização planejada para a VM da classei na camadaj.
d∗

i,j Tempo médio de serviço de requisições da classei na infraestrutura
fı́sica da camadaj quando rodando com capacidade total (seg).

pi,j Probabilidade das requisições da classei deixarem o sistema antes de
visitar a camadaj.

λ∗
i Taxa de chegada prevista (reqs/s) para a classei.

Tabela 1. Par âmetros do Sistema, Previsor de Carga e Contrato

é usado para restringir a taxa de chegada de requisições no intervalo. A construção e
avaliação destes módulos está fora do atual escopo.

Os parâmetros usados pelo gerente de capacidade, descrevendo o modelo de
negócios, requisitos de contrato, configuração do sistema e caracterı́sticas da carga são
definidos na tabela 1. Nós assumimos que todas as requisiç˜oes de uma classe são es-
tatisticamente indistinguı́veis, tendo todas o mesmo tempo médio de serviço na infra-
estrutura de cada camada (rodando com capacidade total), dados pord∗

i,j. O parâmetro
νi,j, um limite superior na utilização planejada da VM atribu´ıda à classei na camada
j (0 ≤ νi,j < 1), é introduzido para evitar degradação do tempo de resposta devido à
saturação, garantindo assim um certo nı́vel de estabilidade nas VMs.

O gerente de capacidade é construı́do de um modelo de otimização que liga um
modelo analı́tico de desempenho com o modelo de custo de duascamadas dirigido a
contratos já apresentado na seção 3.2.

4.2. Modelo de Desempenho

Esta seção apresenta um modelo de filas analı́tico para estimar métricas de desempenho
usadas pelo gerente de capacidade, a saber: utilização dos recursos em cada camada,
taxa de processamento do sistema e a probabilidade de violac¸ão do tempo de resposta
do contrato para cada classe. Nosso modelo assume que chegadas de requisições para
cada classe seguem um processo de Poisson. Requisições daclassei aceitas no sistema
chegam na primeira camada com taxaλacc

i . Nós assumimos que classes possuem tempos
de serviço exponencialmente distribuı́dos em cada camada, deixando o estudo de outros
padrões, especı́ficos de aplicação, para trabalhos futuros.

Sob estas premissas, o sistema virtualizado multi-camadasé modelado comoN
redes de filas em seqüência, uma para cada aplicação, como mostrado na Figura 3. A



Figura 3. Modelo do Sistema Multi-Camadas.

VM atribuı́da a cada classe em cada camada é representada como uma fila M/M/1 com
escalonamento PCPS [Kleinrock 1975]. Esta fila é comumenteusada como um modelo
razoável para centros de serviços transacionais [Villela et al. 2004].

Como é garantido que cada aplicação terá acesso a pelo menos a quantidade de re-
cursos que foi atribuı́da a ela, nós estimamos o tempo médio de serviço de uma requisição
da classei na camadaj, di,j, pelo tempo médio de serviço na camada com capacidade
total, inflada pela fração atualmente atribuı́da à classei, dada porfi,j. Em outras palavras,
di,j = d∗

i,j/fi,j. Dadas as probabilidades de roteamentopi,j, a taxa de chegada efetiva pra
classei na camadaj é dada porλe

i,j = λacc
i

∏j−1

k=1
(1 − pi,k). Note queλe

i,1 = λacc
i . Além

disso,λe
i,j = λacc

i sepi,j = 0, ∀i ∈ N e j = 1..K − 1.

Dada a condição de fluxo balanceado [Kleinrock 1975], que diz que todas as
requisições aceitas são processadas, a taxa de processamento da classei é dada pela taxa
de chegadaλacc

i . A utilização da camadaj pela classei éρi,j = λe
i,jdi,j [Kleinrock 1975].

O componente mais desafiador do nosso modelo de desempenho éa estimativa
da probabilidade de uma requisição da classei violar o tempo de resposta do contrato.
Dado o tempo de residência de uma requisição da classei na camadaj, Ri,j, e o tempo
de resposta do sistemaRi =

∑K

j=1
Ri,j , nosso objetivo é estimarP (Ri ≥ RSLA

i ).

Note queRi,j é o tempo de resposta de uma fila M/M/1, exponencialmente dis-
tribuı́do com parâmetroγi,j = 1/di,j − λe

i,j [Kleinrock 1975]. Lembre também que a
soma deK variáveis exponenciais com taxasγi,j (j = 1..K) segue uma distribuição
hipoexponencial [Trivedi 2002]. Logo:

P (Ri ≥ RSLA
i ) =

K
∑

j=1

(

K
∏

k=1,k 6=j

γi,k

γi,k − γi,j

)

e−γi,jRSLA
i (1)

Devido ao fato deste modelo capturar o paralelismo que existe num ambiente
multi-camadas, nós esperamos que a equação 1 seja mais precisa do que qualquer abor-
dagem de camada única. Num modelo de camada única, a melhoraproximação é deri-
vada do tempo de resposta de uma única fila M/M/1, exponencialmente distribuı́do com
parâmetro1/

∑K
j=1

di,j − λacc
i [Abrahao et al. 2006]. A equação 1, porém, é muito mais

complexa, o que pode comprometer o tempo de solução do modelo. Assim, nós também
consideramos uma aproximação derivada da Inequação deChebyshev [Kleinrock 1975],
que provê o seguinte limite superior à probabilidade de violações para a classei:

P (Ri ≥ RSLA
i ) ≤

V ar[Ri]

(RSLA
i − E[Ri])2

(2)



max

N
∑

i=1

gi(λ
acc
i )

s.t. 0 ≤ λacc
i ≤ min(λ∗

i , X
SSLA
i ) ∀i ∈ N (a)

di,j =
d∗

i,j

fi,j

∀i ∈ N, j ∈ K (b)

ρi,j = λe
i,jdi,j ≤ νi,j ∀i ∈ N, j ∈ K (c)

N
∑

i=1

fi,j ≤ 1 ∀j ∈ K (d)

fi,j ≥ 0 ∀i ∈ N, j ∈ K (e)

P (Ri ≥ RSLA
i ) ≤ αi ∀i ∈ N (f)

Figura 4. Modelo de Otimizaç ão do Gerente de Capacidade.

E[Ri] e V ar[Ri] são a média e a variância do tempo de resposta para a classei,
dadas porE[Ri] =

∑K

i=1

1

γi,j
eV ar[Ri] =

∑K

i=1
( 1

γi,j
)2.

4.3. Modelo de Otimizaç̃ao

O componente central do nosso gerente de capacidade é o modelo de otimização mostrado
na figura 4. A sua principal variável de decisão é o vetorfi,j. A função objetivo expressa
o objetivo de negócio do provedor, dado pela soma, atravésde todas as classes, do balanço
total das penalidades e recompensas. Vamos descrever primeiro as restrições.

A restrição (a) diz que a taxa admitida de requisições para cada classe é limitada
pela taxa de chegadas predita e pela taxa de processamento m´axima que dá lucro para o
provedor quando a classe está operando em modo sobrecarregado. A restrição (b) define
o tempo médio de serviço da classei na sua VM da camadaj. A restrição (c) limita
a utilização na camadaj pela classei, ρi,j, à utilização máxima planejada para aquela
VM. As restrições (d) e (e) impõem limites óbvios ao vetor fi,j. Finalmente, a restrição
(f) expressa o requisito de tempo de resposta do contrato. Duas variantes do modelo são
criadas a partir do uso das equações 1 e 2 nessa restrição.

Voltemos agora à formulação degi, o lucro do provedor obtido da classei. Lembre
que recompensas são pagas ao provedor sempre queλacc

i > XNSLA
i . A restrição (a)

garante um limite superior nessas recompensas através deXSSLA
i . Penalidades ocorrem

sempre queλacc
i < min(λ∗

i , X
NSLA
i ). Assim, o lucro total obtido da classei, gi, é:

gi =

{

−ci

(

min(λ∗
i , X

NSLA
i ) − λacc

i

)

λacc
i ≤ XNSLA

i

ri

(

λacc
i − XNSLA

i

)

λacc
i > XNSLA

i

(3)

Note quegi, e conseqüentemente a função objetivo, cresce comλacc
i . Porém,λacc

i

é limitada pela carga e contrato (restrição (a)), pelas limitações de utilização dos recursos
(restrição (c)), e, acima de tudo, pelo requisito de tempode resposta do contrato (restrição
(f)). As duas últimas restrições ligam os valores deλacc

i às variáveis de decisãofi,j.

O modelo de otimização mostrado na figura 4 é uma extensão, para ambientes
multi-camadas, do proposto em [Abrahao et al. 2006]. Como anteriormente, o maior de-



safio, do ponto de vista da otimalidade e do tempo de solução, está na função objetivo
linear por partes e na restrição (f) sobre o tempo de resposta. A função linear por par-
tes pode ser transformada num conjunto de restrições lineares, facilmente tratáveis, se
ci > ri, ∀i. Várias soluções foram encontradas para resolver os problemas criados pela
restrição (f), a mais eficiente delas aproxima os pontos onde a função hipoexponencial
não está definida (γi,x = γi,y, x 6= y), por uma distribuição de Erlang. Essa aproximação
é assintoticamente exata e permite a solução veloz e correta do modelo.

Nosso modelo foi implementado e testado em AMPL [Fourer et al. 1993], uma
linguagem de modelagem para programação matemática. Testamos diferentes soluciona-
dores, e todos convergiram para a mesma solução em todos ostestes.

5. Resultados
Nesta seção avaliamos a relação custo-eficiência do nosso arcabouço, comparando-o
com nossa antiga estratégia auto-adaptativa de camada única [Abrahao et al. 2006] e com
alocação de capacidade estática. A principal métrica de comparação é o balanço obtido
por cada estratégia. Em nossos experimentos nós consideramos um ambiente com duas
camadas (K = 2).

Nós avaliamos as duas variantes do nosso gerente de capacidade que estimam
a probabilidade de violações do tempo de resposta com a distribuição hipoexponen-
cial e a inequação de Chebyshev. No modelo de uma camada esta probabilidade é es-
timada a partir da distribuição exponencial do tempo de resposta de uma fila M/M/1
[Abrahao et al. 2006], com a demanda média de cada classe sendo a soma das deman-
das em cada camada. Finalmente, para alocação estática assumimos a melhor alocação
de capacidade em cada camada, atribuindo uma fração fixa dacapacidade da camadaj à
classei proporcional à sua utilização média pela classei através de toda a carga; usamos a
distribuição hipoexponencial (equação 1) para calcular a taxa das requisições que podem
ser admitidas no sistema de forma a satisfazer os requisitosde contrato. Nos referimos a
estas estratégias comohipoexponencial, Chebyshev, exponencialeest́atica.

Nós construı́mos um simulador orientado por eventos que modela o sistema. Para
as estratégias auto-adaptativas, o simulador é acopladoa um solucionador do modelo de
otimização, que calcula o vetor de alocação de capacidade fi,j e as taxas de chegadas
admitidasλacc

i , do próximo intervalo. Durante todos os intervalos, o tempo de resposta de
cada requisição, bem como a taxa de processamento e utilização de todas as classes são
coletados e usados para calcular o balanço do provedor.

Usamos um controle de admissão conservador que aceita uma requisição da classe
i com probabilidadeλacc

i /λ∗
i , mantendo a premissa de chegadas seguindo um processo

Poisson para as requisições aceitas. Assumimos também que todas as requisições visitam
ambas camadas, e que a utilização máxima planejada para todas as VMs é 95% (pi,j = 0 e
νi = 0.95). Finalmente, como nosso foco é o custo-benefı́cio do novométodo, assumimos
que não existe limite de tempo para adaptar o sistema e previsão ideal da carga, onde as
taxas de chegadas futuras são conhecidasa priori. A seleção e avaliação de um método
de previsão de carga é deixada para trabalho futuro. Todosos resultados apresentados são
médias de 5 execuções (20 na seção 5.1), com desvio padrão abaixo de 2% das médias.

5.1. Gerente de Capacidade Escalável

Nós avaliamos quão escalável é nosso arcabouço multi-camadas para configurações com
até 60 classes. Nosso foco foi na abordagem hipoexponencial, devido à sua maior com-



Cenário 1 Cenário 2
Classei d∗

i,1(ms) d∗
i,2(ms) d∗

i,1(ms) d∗
i,2(ms)

1 0.6 0.4 1 0.7
2 0.4 0.6 0.7 1

Tabela 2. Tempo M édio de Serviço Por Camada para os Cen ários 1 e 2

Cenário RSLA
i XNSLA

i XSSLA
i ci ri αi

1 e 2 0.1 s 500 req/s 1200 req/s 1.0 0.5 0.1
3 210 s 0.08 req/s 10 req/s 3500 1750 0.1
4 105 s 0.08 req/s 10 req/s 1750 875 0.1

Tabela 3. Valores dos Par âmetros do Modelo de Neg ócio ( i = 1..N )

plexidade e maiores tempos de solução. Nossos experimentos foram realizados usando o
solucionador não linear SNOPT [Gill et al. 2002], num computador com um processador
AMD Sempron 2400 com 2GHz e 512MB de RAM.

O tempo médio de solução do modelo aumenta com o número declasses. Um
ajuste linear dos dados indica que o tempo médio de solução do modelo, tipicamente
abaixo de 1 segundo, cresce com uma fração pequena do número de classes. Concluindo
que nosso gerente de capacidade escala bem para cenários práticos.

5.2. Cargas Sint́eticas

Esta seção apresenta resultados de simulação para cargas sintéticas e duas classes de
aplicação. Dois cenários ilustram os principais compromissos e benefı́cios de nossa
solução. O intervalo de controle é escolhido como 1000 segundos em ambos os cenários.

No ceńario 1, as requisições de cada classe chegam de acordo com o processo
de Poisson periódico não-homogêneo mostrado na figura 5-a. Taxas de chegada variam
desde 0 a 1000 requisições por segundo, com degraus e perı́odos de 1000 e 10000 se-
gundos, respectivamente. Ambas as cargas possuem o mesmo perfil, porém com um
deslocamento em seus perı́odos. Este é um cenário interessante para as abordagens auto-
adaptativas, que podem redirecionar capacidade ociosa de VMs com baixa carga para
outras que estejam sobrecarregadas. O gerente de capacidade é chamado ao final de cada
intervalo, que coincide com os instantes quando as taxas de chegada mudam.

Tempos médios de serviço para cada classe em cada camada e valores dos
parâmetros do modelo de negócio são mostrados nas tabelas 2 e 3, respectivamente. Note
que as classes 1 e 2 possuem gargalos nas camadas 1 e 2, respectivamente. Neste caso,
nossas abordagens auto-adaptativas multi-camadas conseguem atribuir dinamicamente,
pra cada aplicação, mais recursos na camada que ela mais necessita. De qualquer forma,
note que o desbalanceamento no tempo de serviço não é muito significativo. Além disso,
ambas as classes possuem os mesmos valores para os parâmetros do modelo de negócio
por que nosso interesse está em avaliar a eficiência relativa das abordagens analisadas.

A figura 5-b mostra o balanço final do provedor para cada modelo ao longo da
simulação. O padrão repetitivo da curva é devido ao padrão periódico das cargas. As
abordagens hipoexponencial e Chebyshev resultam em balanc¸os quantitativamente simi-
lares ao longo da simulação. Notamos que ambas abordagensprovêem ganhos marginais
(11%) sobre a abordagem estática quando as classes possuemcargas complementares,
mesmo sendo esse o melhor cenário para as abordagens auto-adaptativas, onde elas po-
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Figura 5. Cargas e Resultados de Simulaç ão para Cargas Sint éticas: Cen ário 1

dem reatribuir capacidade entre VMs. Isto deve-se ao fato dacarga imposta em cada
camada ser muito leve. Assim, a capacidade de auto-adaptação não é um diferencial.
Os lucros são ditados principalmente pelas oportunidadesde capitalizar de aplicações em
modo de operação sobrecarregado, que são as mesmas para todas as abordagens.

Por outro lado, o tempo de serviço médio usado pela abordagem exponencial é
1ms, fazendo com que a infraestrutura esteja sub-provisionada para as taxas de requisições
agregadas. Os ganhos no balanço total resultante de nossasabordagens auto-adaptativas
multi-camadas sobre a de camada única variam de 17% (nos picos) a 103% (nos vales).
De fato, quando ambas as cargas possuem carga similar, a abordagem de camada única,
baseada num modelo simplificado do sistema, é significativamente sobrepujada até pela
abordagem estática. A figura 5-c sumariza estes resultados, mostrando as distribuições
acumuladas do balanço em todos os intervalos. As abordagens auto-adaptativas multi-
camadas apresentam retorno total 28% maior que a abordagem de camada única.

Vamos avaliar agora oceńario 2, caracterizado por uma carga de trabalho mais
pesada e com tempos médios de serviço em cada camada mais desbalanceados. Os perfis
de carga são idênticos aos mostrados na figura 5-a, porém as taxas variam de 200 a 1200
chegadas por segundo. Os parâmetros do sistema são mostrados nas tabelas 2 e 3.

A figura 6-a mostra o balanço do provedor para cada abordagem. A abordagem hi-
poexponencial leva a melhores balanços que a Chebyshev, quando as taxas de requisições
de cada classe estão balanceadas. O ganho no balanço totalé cerca de 20%. Como espe-
rado, o erro da aproximação fica mais significativo com cargas mais pesadas. Ao contrário
do cenário prévio, ambas abordagens superam significativamente a estratégia estática (até
580%) em intervalos onde as classes possuem taxas de chegadacomplementares. Além
disso, a estratégia de camada única, com retornos flutuando entre -458 e -157, é sobrepu-
jada pelas três estratégias por ordens de magnitude.

Notamos que dois fatores primários que impactam a custo-eficiência das es-
tratégias de gerenciamento de capacidade são habilidadede adaptar-se a mudanças na
carga e a precisão do modelo de desempenho, que impactam as decisões de alocação e
controle de admissão. A alocação de capacidade fixa penaliza significativamente a abor-
dagem estática para cargas pesadas e heterogêneas (ex.: cenário 2). Além disso, em am-
bos os cenários analisados (e em um cenário omitido com cargas totalmente balanceadas
e aplicações homogêneas), a abordagem de camada única ´e significativamente penalizada
pelo seu modelo de desempenho simples. Para satisfazer as restrições de tempo de res-
posta, a abordagem de camada única é forçada a fazer decisões de alocação e controle de
admissão mais conservadoras, levando a balanços piores.

Esta conclusão é ilustrada nas figuras 6-b e 6-c, que mostram a taxa de requisição
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Cenário / Média dos Classei
Tempos de Serv. (s) 1 2 3 4 5 6 7 8
3 d∗

i,1 0.5 2.0 1.5 3.0 - - - -
d∗

i,2 3.0 1.5 2.0 0.5 - - - -
4 d∗

i,1 0.25 1.25 0.75 0.9 0.85 1.0 0.5 1.5
d∗

i,2 1.5 0.5 1.0 0.85 0.9 0.75 1.25 0.25

Tabela 4. Tempo M édio de Serviço Por Camadas nos Cen ários 3 e 4.

admitida e a distribuição do tempo de resposta para cada classe. As taxas para a abor-
dagem de Chebyshev, omitidas, estão entre as taxas das abordagens hipoexponencial e
estática. Note que a decisão de alocação e controle de admissão mais agressiva tomada
pelas abordagens hipoexponencial e estática levam a um maior número de violações do
tempo de resposta. De qualquer forma, a figura 6-c mostra que arestrição do contrato
(P (R > 0.1) < 0.1)) é satisfeita por todas as abordagens.

Finalmente, para verificar o impacto de erros na predição da carga de chegada,
rodamos simulações com diferentes intervalos de controle para oceńario 2. Nós escolhe-
mos durações de intervalos que não coincidem com os instantes nos quais a carga muda.
Para intervalos com durações de 300 e 600 segundos, a diminuição do lucro comparado
com os resultados mostrados na figura 6-a é apenas 5% (8%) e 11% (15%), respectiva-
mente, para o modelo hipoexponencial (Chebyshev). Conclu´ımos que nossa solução é
razoavelmente robusta a erros de predição de carga.

5.3. Perfis de Carga Realistas

Nesta seção avaliamos as abordagens de gerência de capacidade para cargas mais realistas.
Construimos novas cargas a partir de logs contendo o númerode chegadas, para intervalos
de 5 minutos, de 4 aplicações reais de comércio eletrônico, por um perı́odo de 3 meses
(de 23/11/2004 a 23/2/2005). Acordos de confidencialidade nos impedem de informar as
fontes. Todos os quatro logs possuem perfis similares, com picos nos mesmos instantes.
Taxas de requisição variam muito, com pico de 17 e uma média de 0.078 requisições por
segundo. A figura 7-a mostra a variação da taxa de chegada para uma classe num dia
tı́pico. Cargas realistas são construı́das assumindo queas requisições seguem processos
Poisson, com taxas mudando a cada intervalo de 5 minutos contidos nos logs.

Dois novos cenários são considerados. Noceńario 3, simulamos as 4 classes dos
nossos logs. Oceńario 4 usa um número maior, 8, de aplicações, cujas cargas são cons-
truı́das duplicando cada um dos 4 logs originais, e deslocando as requisições duplicadas
6 horas para o futuro. O tempo médio de serviço em cada camada é escolhido de forma a
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fazê-la sub-provisionada para atender a carga agregada. Além disso, a demanda agregada
em cada camada bem como os requisitos de taxa de processamento do contrato são fixos
e dados nas tabelas 3 e 4. O intervalo de controle é ajustado para 5 minutos.

As distribuições acumuladas do balanço para ambos os cenários estão mostrados
nas figuras 7-b e 7-c. A abordagem hipoexponencial resulta nos melhores balanços. No
cenário 3, a estratégia estática é tão boa quanto a hipoexponencial. Os perfis de carga
muito similares das quatro aplicações deixam pouco espac¸o para ganhos devido ao ge-
renciamento dinâmico. Note, porém, a degradação significativa no cenário 4, que tem
mais oportunidades de alocação dinâmica de capacidade entre as 8 classes. Neste caso, a
abordagem hipoexponencial resulta em aumento de 429% no balanço total.

Como no cenário 2, a abordagem hipoexponencial apresenta melhor custo-
benefı́cio do que a abordagem Chebyshev, levando a ganhos de20% e 26% no retorno
médio diário nos cenários 3 e 4, respectivamente. Novamente, a abordagem de camada
única é sobrepujada por ordens de magnitude.

6. Conclus̃oes e Trabalhos Futuros

Neste artigo apresentamos um arcabouço auto-adaptativo de gerenciamento de capaci-
dade para sistemas virtualizados multi-camadas. Ele implementa um modelo de desem-
penho de múltiplas filas preciso, que captura gargalos especı́ficos de aplicação e o pa-
ralelismo inerente a arquiteturas multi-camadas. Nós rodamos simulações para vários
cenários. Nossas principais conclusões são três. Primeiro, nossa solução auto-adaptativa
multi-camadas é escalável e significativamente mais eficiente que alocação estática para
cargas pesadas e desbalanceadas. Segundo, o modelo de desempenho simplificado e im-
preciso de camada única leva a decisões de alocação conservadoras, que comprometem
sua eficiência. Finalmente, nossa abordagem multi-camadas é robusta e pode ser aplicada
para gerência de capacidade de ambientes virtualizados sujeitos a variação de capacidade.

Direções para trabalhos futuros incluem: (a) estender nossos modelos para dife-
rentes padrões de tráfegos de aplicação e modelar os recursos de cada camada individu-
almente; (b) incluir custos operacionais e de gerência (energia); (c) conceber modelos de
negócio mais ricos; e (d) avaliação adicional da aplicabilidade do nosso arcabouço para
ambientes virtualizados sob ataques.
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