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Abstract. This paper addresses the problem of hosting multiple appdos
on a provider’s virtualized multi-tier infrastructure. Bding from a previous
model, we design a new self-adaptive capacity managenanefrork, which
seeks to maximize the provider's business objective. Oum sentributions
are the more accurate multi-queue performance model, alsasehe solution
of the associated complex optimization model. Our approa@valuated via
simulation experiments with synthetic as well as realistickloads. The results
show that our solution is significantly more cost-effectiven the approach it
is built upon, which uses a single-resource performanceahaad a multi-tier
static allocation strategy.

Resumo. Este artigo aborda o problema de hospedarias aplicaes numa
infra-estrutura virtualizada multi-camadas de um provedRartindo de um mo-
delo ptévio, rbs projetamos um novo arcabouc¢o auto-adaptativo démysa de
capacidade, que procura maximizar o objetivo dedeig do provedor. Nossas
principais contribuies $0 um modelo de desempenho multi-filas mais pre-
ciso, bem como a sol&ég do complexo modelo de otimiZacassociado. NOsSSso
métodoé avaliado atraes de simulago com cargas sig@ticas e realistas. Os
resultados mostram que nossa s@a¢ significativamente mais eficiente que
o método do qual foi derivada, que usa um modelo de desempemhac@a
camada; e uma estragia de alocago esética multi-camadas.

1. Introducao

Servicos de Internet e Web geralmente recorrem a terag@@da infra-estrutura com-
putacional como uma alternativa financeiramente atratara pospedar seus servigos
[Ross and Westerman 2004]. Nesse cenario, o provedor dgsassina contratos de
nivel de servico$LA com um provedor de infra-estrutura. O provedor de senvigabe
requisitos de qualidade, e o objetivo do provedor de inftaséura € encontrar a estratégia
mais eficiente para gerenciar seus recursos, compartghpedas aplicacdes hospedadas.

A geréncia de capacidade dessa infra-estrutura se tortiaut@rmente desafia-
dora devido a varias razdes. Web-services atuais utilzamplexas e heterogéneas plata-
formas de servico multi-camadas compostas de serviddréPHservidores de aplicacao
e, talvez, um banco de dados. Além disso, heterogeneidadplitacdes e flutuacdes
da carga de trabalho [Chase et al. 2001] nao podem ser édiciente acomodadas com
estratégias estaticas de geréncia de capacidade. daemgo, virtualizacao de recursos
[Barham et al. 2003, Whitaker et al. 2002] cria um ambientésroasto-efetivo, através
da criacao de maquinas virtuais (VMs) dedicadas a umeaagalo.

Novas cobrancas dos provedores de servico tornam maiglexana construcao
de estratégias custo-efetivas de geréncia de capacidadste um crescente interesse



no estabelecimento de contratos onde o pagamento € pramaraos recursos realmente
utilizados [Wilkes et al. 2004]. Estes contratos devem @rgarantias ndao so sobre a taxa
de processamento, mas também sobre o tempo de respostadbgEara cada requisicao
[Liu et al. 2005]. Esta Gltima implica em garantias sobralda da distribuicdo do tempo
de servico, ao contrario de requisitos tradicionaissalmediado tempo de resposta. Es-
tes requisitos implicam num aumento da complexidade dasatos, modelos de negocio
e, por fim, solugbes de geréncia de capacidade mais caftlas.

Em [Abrahao et al. 2006], propomos uma solugcao para geneento de capaci-
dade auto-adaptativa que aborda alguns dos desafios matasoanteriormente. Nossa
solugcao combina um modelo de custo, construido a partirnd modelo de contrato de
dois niveis, um modelo de desempenho baseado em filas e uatawtedotimizacao que
maximiza o objetivo de negbcio do provedor. Este artigaexie nosso trabalho prévio e
propde um arcabouco de gerenciamento de capacidadécagwamente mais eficiente
para sistemas virtualizados multi-camadas. Este arcalamasume que a infra-estrutura
fisica em cada camada é virtualizada, atribuindo umaumagqvirtual local para cada
aplicacao hospedada. Nesse caso, 0 modelo de desemggmbsenta cada maquina
virtual como uma fila separada, capturando assim o parakeliserente a plataformas
multi-camadas nao capturado por modelos de camada Unica.

Nbs comparamos nossas abordagens multi-camadas commodsto anterior
de camada Unica e também com uma estratégia de aloestd@itica multi-camadas.
Simulac¢des com cargas de trabalho sintéticas e reafigtausadas para medir a eficiéncia
relativa das estratégias analisadas em varios cerdgimgeresse. Nossas principais con-
clusdes sao as seguintes. Primeiro, nossa abordageircamkda auto-adaptativa escala
razoavelmente bem para cenarios praticos. Segundosoeadeacargas pesadas e desba-
lanceadas, ganhos significativos de lucro sao obtidosgreledor, se comparados com
alocacao estatica multi-camada. Terceiro, as impbesisle desempenho introduzidas
pelo modelo de camada Unica levam a decisdes de alocag#o conservadoras. Em
consequéncia disso, a estratégia de camada Unicar®irds abordagens multi-camadas
auto-adaptativas e estaticas em ordens de magnitude,aripgando as aplicacdes hos-
pedadas sao homogéneas e possuem demandas balanceaéagas camadas.

Este artigo & organizado como segue. A secao 2 discutalli@s relacionados.
Nosso ambiente virtualizado multi-camadas e modelo de®@atire o qual nossas abor-
dagens sao construidas sao descritos na secao 3.3A 4egpresenta nosso arcabouco
auto-adaptativo. Resultados de simulacao sao apeskenna secao 5. Conclusoes e
trabalhos futuros estao disponiveis na secao 6.

2. Trabalhos Relacionados

Trabalhos prévios sobre geréncia autbnoma de capacdifatem deste estudo pois nao
se aplicam a ambientes multi-camada. Nosso trabalhogseii[Abrahao et al. 2006]
combina um modelo de negbcio de dois niveis, um modelo dendpenho baseado em
filas e um modelo de otimizacao para alocar dinamicamecapacidade disponivel entre
as aplicacdes, maximizando o objetivo de negbcio doguor Modelos com um Unico
centro de servico, como filas M/M/1 e M/G/1, sao usados paoaer estimativas do
tempo de resposta. Este trabalho estende os modelospdevitesempenho e otimizacao
para arcabouc¢os multi-camadas, aumentando sua precefiencia.

Uma pequena quantidade de trabalhos usam modelos avsfiica avaliar o de-
sempenho de sistemas para realocar recursos entre ag@pdicendo executadas. Em



[Almeida et al. 2006], nds consideramos um método quedavaonsideracao o custo de
operacao da infra-estrutura (ex.: energia) no mecangamgeréncia. O lucro total € uma
combinacao do modelo de negbcio e dos custos de operagd[Villela et al. 2004], os
autores apresentam métodos para alocar um numero fixoud@oses entre um conjunto
arbitrario de usuarios com diferentes cargas e contda®rvico. Os autores assumem
uma arquitetura de uma camada representada por uma fila M@&thum dos trabalhos
anteriores é aplicavel a sistemas com multiplas camadas

O trabalho em [Liu et al. 2001] faz alocacao de recursaane maximizar lucros
de um provedor de comércio eletrbnico. Os autores asswmasncarga estatica e nao
consideram virtualizacdo em sua avaliagdo. A ref. [Mm@ and Bennani 2006] consi-
dera ambientes virtuais e desenvolve um método de gardaciapacidade para alocacao
de CPUs, considerando alocacao por prioridades e coithparento. Nenhum destes
dois métodos possui modelos de negécio, levando em @rag#@b apenas métricas da
infra-estrutura, o que pode nao estar de acordo com o whphti provedor (ex.: maximi-
zar lucro). Alem disso, estes métodos nao se aplicam &atels multi-camadas.

Um modelo analitico fechado baseado em filas para servigds-camadas &
apresentado em [Urgaonkar et al. 2005a]. Este modelodrigero suficiente para captu-
rar o comportamento de camadas com diferentes caraiti@sise aplicacao e desempe-
nho. Porém, o foco do modelo & prever o tempo médio de stspdo tendo modelos de
otimizacao para alocacao dinamica de capacidade \Egapnkar et al. 2005b], os auto-
res apresentam um arcabouco de geréncia de capacidadaptiaacdes multi-camadas
com cargas de sessao. Filas G/G/1 sao utilizadas, masacatmde capacidade s6 € ob-
tida apos uso de aproximacgoes e limitagcdes. Alemogisesso método prové geréncia
de capacidade alinhada com os objetivos de negb6cio doguwoweravés de um flexivel
modelo de negocio.

3. Modelo de Infraestrutura

Esta secao descreve a plataforma alvo (secao 3.1) dw rawsabouco de geréncia de
capacidade auto-adaptativo e 0 modelo de custo (sechsdh o qual & construido.

3.1. Plataforma de Hospedagem Virtual

Consideramos um cenario onde um provedor hospeda nositg@rvicos Web de ter-

ceiros. Servigcos Web tipicos sao compostos de difesdiges de requisicdes, nds nos
referimos a cada tipo de requisicao como wtesse de aplicafpo e assumimos que a

infra-estrutura hospedd classes independentes oriundas de todos 0s servicos.

No6s consideramos que a infra-estrutura do provedor € cstagle multiplask)
camadas, caso comum para varios servicos Web. Cada c@amwadponsavel por uma
tarefa especifica no processo de servir uma requisigao ¢amadas de apresentacao,
aplicacao e banco de dados). Camadas operam em paratgloigicoes visitam camadas
em sequéncia. Isto &€, umarequisicao da clasatra na camada é servida, e entao deixa
0 sistema com probabilidage; (i =1..N,j = 1..K,p; x = 1).

Cada camada é hospedada kandware dedicado, compartilhado por todas as
classes. Assumimos que cada camada roda um mecanismo wEizétao, como
o Xen [Barham et al. 2003] ou Denali [Whitaker et al. 2002]e qurové diferenciacao
de servico e isolamento de desempenho para as classedddape A camada de
virtualizagao possibilita ao provedor aumentar ou dumridinamicamente a quantidade
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de recursos fisicos dedicados a uma classe numa camadpeimtbntemente. Assim,
nos definimos o problema de alocacao de capacidade coeteraninacao das fracdes de
capacidade fisica para cada claseen cada camada

A plataforma de hospedagem considerada € mostrada naFiguBobre cada
camada da infra-estrutura fisica, uma camada de virag criaN maquinas virtuais
(VMs) isoladas, uma para cada classe. Cada requisicaandeclasse de aplicacao é
servida porK VMs dedicadas aquela classe. Assumimos que as VMs usanguae al
esquema de controle de admissao para evitar instabiledpda garantir que os requisitos
de tempo de resposta serao atendidos. Focamos na aattagénica de capacidade, com
o alvo de maximizar o objetivo de neg6cio do provedor, desarseguir.

3.2. Modelo de Custo

Em [Abrahao et al. 2006], propomos um esquema de cobrarg#&raga a alta variacao
das cargas das aplicacOes em servigcos online. Estesalmemie recebem moderadas
cargas de trabalho, mas ocasionalmente sao subitament#aitios com uma grande so-
brecarga de requisicdes. Este fendmeno, conhecido flastocrowd gera congestio-
namento na infra-estrutura de servigo, causando atragaficativos aos usuarios. Em
contrapartida, ndés propomos contratos com dois niveiegaisitos, a dizer, normal e
sobrecarregado. Se necessario, nossa abordagem podsteselida para mais de dois
niveis, especificando miltiplos alvos de desempenho.idtaissao seguinte, nos referi-
mos ao provedor de servico coraslario, que estabelece um contrato corprovedor
de infra-estrutura para hospedar seu servico.

No modo de operagao normal, usuarios contratam um deveérvico que satisfaz
suas necessidades durante a maior parte do tempo, enqoantwlo de operacao sobre-
carregado, um nivel de servico mais elevado é estaldelezieé onde o provedor tem um
incentivo para atribuir capacidade extra a aplicacda paomodar ocasionais picos de
carga. Do ponto de vista de negocio, esta abordagem poders@josa tanto para 0s
usuarios, que pagam por capacidade extra apenas quareksaeg, e para provedores,
gue podem oferecer planos mais atrativos por operarem coon fiexibilidade.

Para 0 modo de operacao normal, & definida uma taxa desgeouentoY V554
para cada classe que o provedor deve atender se a taxa de chegada de régsifig
alta o bastante. No caso de violacdes do contrato, o poowetcorda em devolver parte
da cobranca pelo servigo a seus usuarios. Para o modoedaca@p sobrecarregado, o
contrato define\? 954 > XNSLA 3 taxa de processamento limite até onde o usuario con-
corda em pagar uma recompensa ao provedor por servir rgigssacima de&’V54, Os
valores das penalidades e recompensas sao calculadds esgrarametros do contrato
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er; por unidade de taxa de processamento abaixo ou acinYa'dé*, respectivamente.

A taxa de processamento valida € composta de todas asigéms cujo tempo de
resposta satisfaca o especificado pelo contrato. Nésdeyasmos um requisito sobre o
tempo de resposta que diz que o tempo de resposta das jégside classenao pode
exceder um certo limité&?>~4 mais do quex; x 100% das vezes. Em outras palavras,
P(R; > R?4) < o4, ondeR; & o tempo de resposta de uma requisi¢ao da ciasse

4. Gerenciamento de Capacidade para Servigos Multi-Camais

Aqui descrevemos nosso modelo auto-adaptativo paragjarée capacidade de servigos
multi-camadas. A secao 4.1 apresenta o arcabouco dafuativo, construido a partir de
nosso modelo prévio de camada Unica [Abrahao et al. 2006jova contribuicdo mais
significativa reside no modelo de desempenho mais precisoneadelo de otimizacao
estendido criado para usa-lo, apresentados nas se@bed 8, respectivamente.

4.1. Arcabouco Auto-Adaptativo

Nosso arcabouco auto-adaptativo propde um modelo dagipedo sistema baseado em
ciclos, mostrado nafigura 2. A entidade centrafeente de capacidagdgque € chamado
periodicamente para alocar a capacidade disponivel eenczadada entre as aplicacdes
hospedadas, objetivando maximizar o objetivo de negazjgravedor. Nos referimos ao
intervalo entre intervengdes consecutivas camervalo de controle

No final de cadantervalo de controleo gerente de capacidade recebe uma pre-
visao da carga de trabalho esperada para cada aplicagiéximo intervalo bem como
0s requisitos do contrato, os tempos médios de servigndddas) e das probabilidades
de roteamento de cada clasgg, Esses parametros podem ser estimados num ambiente
pré-producao como detalhado em [Urgaonkar et al. 20653po usados para compu-
tar a fracdo da capacidade disponivel em cada camadaeyeeadser atribuida a cada
aplicacao. Eles sao também usados para estimar aofidgS requisicdes previstas que
podem ser aceitas no sistema sem violar limitacOes decickguie. A nova alocagao de
capacidade é entao enviada para a camada de virtusdizggé atualiza o mapeamento
de recursos.

Os intervalos de controle podem ter duracao fixa ou vatj@ependendo das ca-
racteristicas do sistema e da estabilidade das cargasduagio minima € restringida
pelo tempo que o gerenciador de capacidade gasta para geecan® sistema. Estima-
tivas futuras da carga de trabalho sao fornecidas por udulngrevisor de carga que
implementa algum método de previsao existente [Abrahaairi_adolter 1983], e que um
mecanismo de controle de admissao (como os discutidos emofPand Elsayed 2003])



| SiIMBOLO | DESCRICAO \

XNSLA | Taxa de processamento valida necessaria da classe modo de
operacao normal.
X754 1 Taxa de processamento valida maxima da classemodo de operagdo
sobrecarregado.
R?TA | Requisito de tempo de resposta da clag{seg).
Q; Limite superior na probabilidade do tempo de resposta exceg"
para uma requisicao da classe
Ci Valor da penalidade por unidade de taxa de processamentasizic
abaixo dex V94,
i Valor da recompensa por unidade de taxa de processamentsdei g
acima dex V54,
N NUmero de classes hospedadas (VMs em cada camada).
K NUmero de camadas.
Vij Maxima utilizacao planejada para a VM da classe camada.
di; Tempo médio de servico de requisi¢cdes da classe infraestrutura
fisica da camadaquando rodando com capacidade total (seg).
Dij Probabilidade das requisi¢des da clasdeixarem o sistema antes ¢e
visitar a camada.
Af Taxa de chegada prevista (reqs/s) para a classe

Tabela 1. Par ametros do Sistema, Previsor de Carga e Contrato

€ usado para restringir a taxa de chegada de requisigb@garvalo. A construcao e
avaliacao destes modulos esta fora do atual escopo.

Os parametros usados pelo gerente de capacidade, deslbmevanodelo de
negocios, requisitos de contrato, configuracao dorete caracteristicas da carga sao
definidos na tabela 1. Nb6s assumimos que todas as reagsstg uma classe sao es-
tatisticamente indistinguiveis, tendo todas o mesmo ¢tempdio de servico na infra-
estrutura de cada camada (rodando com capacidade towd)s gard; ;. O parametro
v; ;, um limite superior na utilizagao planejada da VM atrdaua classe na camada
j (0 < y;; < 1), &introduzido para evitar degradacao do tempo de stapevido a
saturacao, garantindo assim um certo nivel de estad#ichas VMs.

O gerente de capacidade & construido de um modelo de atauzjue liga um
modelo analitico de desempenho com o modelo de custo decdnzadas dirigido a
contratos ja apresentado na secao 3.2.

4.2. Modelo de Desempenho

Esta secao apresenta um modelo de filas analitico pamsaeshétricas de desempenho
usadas pelo gerente de capacidade, a saber: utilizagaedorsos em cada camada,
taxa de processamento do sistema e a probabilidade deasotictempo de resposta
do contrato para cada classe. Nosso modelo assume que abelgacequisicdes para
cada classe seguem um processo de Poisson. RequisicOlesska aceitas no sistema
chegam na primeira camada com taX&. NOs assumimos que classes possuem tempos
de servico exponencialmente distribuidos em cada candaileando o estudo de outros
padroes, especificos de aplicacao, para trabalhaofutu

Sob estas premissas, 0 sistema virtualizado multi-cam@dasdelado comav
redes de filas em sequiéncia, uma para cada aplicacao, mastrado na Figura 3. A
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Figura 3. Modelo do Sistema Multi-Camadas.

VM atribuida a cada classe em cada camada é representadaucoa fila M/M/1 com
escalonamento PCPS [Kleinrock 1975]. Esta fila & comumesdada como um modelo
razoavel para centros de servigcos transacionais [&idehl. 2004].

Como € garantido que cada aplicacao tera acesso a pelisraguantidade de re-
cursos que foi atribuida a ela, nds estimamos o tempoawkedéervico de uma requisicao
da classe na camadg, d; ;, pelo tempo médio de servico na camada com capacidade
total, inflada pela fragao atualmente atribuida a elastada porf; ;. Em outras palavras,

d;j = d; ;/ fi ;. Dadas as probabilidades de roteamentoa taxa de chegada efetiva pra
classel na camadg & dada pon§; = A\ 7_V (1 = pix). Note quex;; = Af«. Alem
disso,\{; = \{“’sep;; =0,Vie Nej=1.K — 1.

Dada a condicao de fluxo balanceado [Kleinrock 1975], gueqgde todas as
requisicdes aceitas sao processadas, a taxa de proesgeala classeé dada pela taxa
de chegadaj. A utilizacao da camadapela classeé p; ; = \{ ;d; ; [Kleinrock 1975].

O componente mais desafiador do nosso modelo de desempenéstigativa
da probabilidade de uma requisicao da clasg®lar o tempo de resposta do contrato.
Dado o tempo de residéncia de uma requisi¢ao da classe€amadg, R; ;, € 0 tempo

de resposta do sistenfa = Zjil R; j, nosso objetivo & estimdt(R; > RY14).

Note queR; ; & o tempo de resposta de uma fila M/M/1, exponencialmente dis
tribuido com parametrg; ; = 1/d;; — X7, [Kleinrock 1975]. Lembre também que a
soma deK variaveis exponenciais com taxas; (j = 1..K) segue uma distribuigao
hipoexponencial [Trivedi 2002]. Logo:

K K
P<RizRf“>=Z< 1 L) o

=1 k=t kg [0k T i

Devido ao fato deste modelo capturar o paralelismo queesrisin ambiente
multi-camadas, nds esperamos que a equacao 1 seja raisapdo que qualquer abor-
dagem de camada Gnica. Num modelo de camada Unica, a nalifeximacao é deri-
vada do tempo de resposta de uma Gnica fila M/M/1, exporiemaide distribuido com
parametral / Zle d; ; — A¢° [Abrahao et al. 2006]. A equagao 1, porém, & muito mais
complexa, o que pode comprometer o tempo de solucao dolmatiesim, nds também
consideramos uma aproximacao derivada da InequacB&beleyshev [Kleinrock 1975],
que prové o seguinte limite superior a probabilidade déagbes para a classe

Var|R;)

P(R; > R} <
( = ) — (R?LA _ E[RZ])Q

(2)




N
max Z Gi(AF)
i=1

st 0 <A < min(\f, X794 Vie N (a)
dr .
d@j - fld Vi S N,j S K (b)
4,
pij =N jdij < vij Vie N,je K (¢
N
Y fu<l vieK (d)
i—1
fij =0 Vie Nje K (e
P(R; > RP™) < oy Vie N (f)

Figura 4. Modelo de Otimiza¢ &o do Gerente de Capacidade.

E[R;] e Var[R;] sao a média e a variancia do tempo de resposta para a tlasse
dadas po[R;] = "L, L eVar[R] = Y15, (22)2

%) Yi,5

4.3. Modelo de Otimiza@o

O componente central do nosso gerente de capacidade é torded¢imizacao mostrado
na figura 4. A sua principal variavel de decis&o & o vetor A funcao objetivo expressa
0 objetivo de negocio do provedor, dado pela soma, atideésdas as classes, do balanco
total das penalidades e recompensas. Vamos descreveirpraneestricoes.

A restricao (a) diz que a taxa admitida de requisicOea pada classe é limitada
pela taxa de chegadas predita e pela taxa de processamexitbarjue da lucro para o
provedor quando a classe esta operando em modo sobreckreégrestricao (b) define
o tempo médio de servigo da classea sua VM da camada A restricao (c) limita
a utilizacdo na camadapela classe, p; ;, a utilizacao maxima planejada para aquela
VM. As restricdes (d) e (e) impdem limites Obvios ao vefg,. Finalmente, a restricao
(f) expressa o requisito de tempo de resposta do contratas fariantes do modelo sao
criadas a partir do uso das equagdes 1 e 2 nessa restricao

Voltemos agora a formulacao gg o lucro do provedor obtido da classd.embre
que recompensas sao pagas ao provedor sempra‘tfue- XN9E4. A restricdo (a)
garante um limite superior nessas recompensas atrav&sde'. Penalidades ocorrem
sempre que\y < min(\f, XV5E4). Assim, o lucro total obtido da classgy;, é:

[ e (min(a, XS4y xger) g < xS “
gi = T ()\;zcc . XiNSLA) )\;zcc > XiNSLA

Note quey;, e conseqiilentemente a fungao objetivo, cresce)X§dmPorém \¢<
é limitada pela carga e contrato (restricao (a)), pétasgdcoes de utilizacao dos recursos
(restricao (c)), e, acima de tudo, pelo requisito de tedgresposta do contrato (restricao
(f)). As duas Ultimas restricdes ligam os valores\gfe€ as variaveis de decisg; .

O modelo de otimizacao mostrado na figura 4 € uma extemsia ambientes
multi-camadas, do proposto em [Abrahao et al. 2006]. Conerimnmente, o maior de-



safio, do ponto de vista da otimalidade e do tempo de solwsia na funcao objetivo
linear por partes e na restricao (f) sobre o tempo de réspdsfuncao linear por par-
tes pode ser transformada num conjunto de restricdearéagefacilmente trataveis, se
¢; > 1y, Vi. Varias solugdes foram encontradas para resolver ddegnas criados pela
restricao (f), a mais eficiente delas aproxima os pontae @nfun¢ao hipoexponencial
nao esta definiday(, = v;,,* # y), por uma distribuicao de Erlang. Essa aproximagao
é assintoticamente exata e permite a solucao veloz etaato modelo.

Nosso modelo foi implementado e testado em AMPL [Fourer.et393], uma
linguagem de modelagem para programacao matematistaries diferentes soluciona-
dores, e todos convergiram para a mesma solugao em totestes.

5. Resultados

Nesta secao avaliamos a relacao custo-eficiencia deonarcabouco, comparando-o
com nossa antiga estratégia auto-adaptativa de camaxdg|Abrahao et al. 2006] e com
alocacao de capacidade estatica. A principal métrcaainparacao € o balanco obtido
por cada estratégia. Em nossos experimentos nos coasideium ambiente com duas
camadask = 2).

No6s avaliamos as duas variantes do nosso gerente de cagacide estimam
a probabilidade de violacdes do tempo de resposta comtabdigao hipoexponen-
cial e a inequacao de Chebyshev. No modelo de uma camadaresiabilidade é es-
timada a partir da distribuicao exponencial do tempo &pasta de uma fila M/M/1
[Abrahao et al. 2006], com a demanda média de cada clasde sesoma das deman-
das em cada camada. Finalmente, para alocacao estdioamienos a melhor alocacao
de capacidade em cada camada, atribuindo uma fracao foapdaidade da camaga
classe proporcional a sua utilizacdo média pela classteavés de toda a carga; usamos a
distribuicao hipoexponencial (equacao 1) para calcaltaxa das requisicoes que podem
ser admitidas no sistema de forma a satisfazer os requagtosntrato. Nos referimos a
estas estratégias corhgpoexponencialChebyshevexponenciak esftica

No6s construimos um simulador orientado por eventos quieta® sistema. Para
as estratégias auto-adaptativas, o simulador & acopladosolucionador do modelo de
otimizag¢ao, que calcula o vetor de alocagao de capdeifig e as taxas de chegadas
admitidas\¢“¢, do probximo intervalo. Durante todos os intervalos, o tem@ resposta de
cada requisicao, bem como a taxa de processamento @citizie todas as classes sao
coletados e usados para calcular o balanco do provedor.

Usamos um controle de admissao conservador que aceitaegonaicao da classe
i com probabilidade\?*“/\f, mantendo a premissa de chegadas seguindo um processo
Poisson para as requisicdes aceitas. Assumimos també&todgas as requisicoes visitam
ambas camadas, e que a utilizagdo maxima planejadagu@sias VMs & 95%(,;, =0 e
v; = 0.95). Finalmente, como nosso foco €& o custo-beneficio do n@todo, assumimos
gue nao existe limite de tempo para adaptar o sistema espreideal da carga, onde as
taxas de chegadas futuras sao conheadasori. A selecao e avaliagao de um método
de previsao de carga é deixada para trabalho futuro. Taglossultados apresentados sao
médias de 5 execucdes (20 na secao 5.1), com desviagabaixo de 2% das médias.

5.1. Gerente de Capacidade Escavel

No6s avaliamos quao escalavel & nosso arcabouco canttedas para configuracdes com
até 60 classes. Nosso foco foi na abordagem hipoexpoheheiddo a sua maior com-



Cenario 1 Cenario 2
Classe | di;(ms) | dis(ms) | dii(ms) | dj,(ms)
1 0.6 0.4 1 0.7
2 0.4 0.6 0.7 1

Tabela 2. Tempo M édio de Servigco Por Camada para os Cen arios 1 e 2

Cenario| RY1A | XNo5LA X oA Ci i a;
le2 | 0.1s| 500reqg/s| 1200reqg/s| 1.0 | 0.5 | 0.1
3 210s| 0.08reqg/s 10reqg/s | 3500| 1750| 0.1

4 105s| 0.08reqg/s 10req/s | 1750| 875 | 0.1

Tabela 3. Valores dos Par ametros do Modelo de Neg 6cio (i = 1..N)

plexidade e maiores tempos de solu¢cao. Nossos expeosifemam realizados usando o
solucionador nao linear SNOPT [Gill et al. 2002], num comaplor com um processador
AMD Sempron 2400 com 2GHz e 512MB de RAM.

O tempo médio de solucao do modelo aumenta com o nimectadses. Um
ajuste linear dos dados indica que o tempo médio de smldgamodelo, tipicamente
abaixo de 1 segundo, cresce com uma fracao pequena domdemelasses. Concluindo
que nosso gerente de capacidade escala bem para cenaticsspr

5.2. Cargas Sinéticas

Esta secao apresenta resultados de simulagao pais cgirgéticas e duas classes de
aplicacao. Dois cenarios ilustram os principais compssos e beneficios de nossa
solugao. O intervalo de controle & escolhido como 1090rsgos em ambos os cenarios.

No cerério 1, as requisicOes de cada classe chegam de acordo com Ggwoce
de Poisson peribdico ndao-homogéneo mostrado na figaraTaxas de chegada variam
desde 0 a 1000 requisi¢cdes por segundo, com degrauscelgeide 1000 e 10000 se-
gundos, respectivamente. Ambas as cargas possuem o mesdihgopeem com um
deslocamento em seus periodos. Este € um cenario saetepara as abordagens auto-
adaptativas, que podem redirecionar capacidade ociosdVidecdm baixa carga para
outras que estejam sobrecarregadas. O gerente de cagaeidaadmado ao final de cada
intervalo, que coincide com os instantes quando as taxasag@da mudam.

Tempos meédios de servico para cada classe em cada camaalareswdos
parametros do modelo de negbcio sao mostrados nasddbeld, respectivamente. Note
que as classes 1 e 2 possuem gargalos nas camadas 1 e 2jvasgedce. Neste caso,
nossas abordagens auto-adaptativas multi-camadas censegribuir dinamicamente,
pra cada aplicacao, mais recursos na camada que ela massita. De qualquer forma,
note que o desbalanceamento no tempo de servi¢co nao @ signfficativo. Alem disso,
ambas as classes possuem 0s mesmos valores para os pesatnetrodelo de negbcio
por que nosso interesse esta em avaliar a eficienciaveetids abordagens analisadas.

A figura 5-b mostra o balanco final do provedor para cada nooaellongo da
simulacao. O padrao repetitivo da curva & devido aodmageriodico das cargas. As
abordagens hipoexponencial e Chebyshev resultam em_ balgoantitativamente simi-
lares ao longo da simulacdo. Notamos que ambas abordageem ganhos marginais
(11%) sobre a abordagem estatica quando as classes posarlgas complementares,
mesmo sendo esse 0 melhor cenario para as abordagenglaptata&as, onde elas po-
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Figura 5. Cargas e Resultados de Simula¢g &o para Cargas Sint éticas: Cen ario 1

dem reatribuir capacidade entre VMs. Isto deve-se ao fatoadga imposta em cada
camada ser muito leve. Assim, a capacidade de auto-adaptép € um diferencial.
Os lucros sao ditados principalmente pelas oportuniddeleapitalizar de aplicacdes em
modo de operacao sobrecarregado, que sao as mesmasdaaras abordagens.

Por outro lado, o tempo de servico médio usado pela abendaxponencial &
1ms, fazendo com que a infraestrutura esteja sub-proedapara as taxas de requisicoes
agregadas. Os ganhos no balanco total resultante de raigsaagens auto-adaptativas
multi-camadas sobre a de camada Unica variam de 17% (nos) @icl03% (nos vales).
De fato, quando ambas as cargas possuem carga similar,dagbor de camada Unica,
baseada hum modelo simplificado do sistema, & significatiwée sobrepujada até pela
abordagem estética. A figura 5-c sumariza estes resujtatmtrando as distribuicdes
acumuladas do balan¢co em todos os intervalos. As aborsagga-adaptativas multi-
camadas apresentam retorno total 28% maior que a abordageaméda Gnica.

Vamos avaliar agora oerario 2, caracterizado por uma carga de trabalho mais
pesada e com tempos médios de servico em cada camada stmtadeeados. Os perfis
de carga sao idénticos aos mostrados na figura 5-a, p&réamas variam de 200 a 1200
chegadas por segundo. Os parametros do sistema saodogssies tabelas 2 e 3.

A figura 6-a mostra o balanco do provedor para cada abordayabmordagem hi-
poexponencial leva a melhores balancos que a Chebystawlgas taxas de requisi¢coes
de cada classe estao balanceadas. O ganho no balangodetah de 20%. Como espe-
rado, o erro da aproximacao fica mais significativo comasrgais pesadas. Ao contrario
do cenario prévio, ambas abordagens superam significatinite a estratégia estatica (até
580%) em intervalos onde as classes possuem taxas de cluegapl@ementares. Alem
disso, a estratégia de camada Unica, com retornos fluilenice -458 e -157, € sobrepu-
jada pelas trés estratégias por ordens de magnitude.

Notamos que dois fatores primarios que impactam a custidiefia das es-
tratégias de gerenciamento de capacidade sao habildkaddaptar-se a mudancas na
carga e a precisao do modelo de desempenho, que impactagcisS8es de alocacao e
controle de admissao. A alocacao de capacidade fixaiparsagnificativamente a abor-
dagem estética para cargas pesadas e heterogéneagi@xio ). Alem disso, em am-
bos os cenarios analisados (e em um cenario omitido cogas#aotalmente balanceadas
e aplicacdbes homogéneas), a abordagem de camadae(siggaficativamente penalizada
pelo seu modelo de desempenho simples. Para satisfazestragOes de tempo de res-
posta, a abordagem de camada Unica € forcada a fazedeedis alocacao e controle de
admissao mais conservadoras, levando a balangos piores.

Esta conclusao é ilustrada nas figuras 6-b e 6-c, que mosttaxa de requisi¢cao
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Cenario / Média dos Classe

Tempos de Serv. (s) 1 2 3 4 5 6 7 8

3| d;, 05 |20 |15 |3.0 |- - - -
;‘2 30 |15 |20 |05 |- - - -

4| d;, 0.25/1.25/0.75/0.9 [|0.85/1.0 |05 |15
Y 15 |05 |10 |[0.85/0.9 [0.75|1.25] 0.25

Tabela 4. Tempo M édio de Servigco Por Camadas nos Cen arios 3 e 4.

admitida e a distribuicdo do tempo de resposta para cadaecl As taxas para a abor-
dagem de Chebyshev, omitidas, estao entre as taxas dakgeos hipoexponencial e
estatica. Note que a decisao de alocacao e controlerdiss@ib mais agressiva tomada
pelas abordagens hipoexponencial e estatica levam a uar manero de violagdes do
tempo de resposta. De qualquer forma, a figura 6-c mostra gegtragao do contrato
(P(R > 0.1) < 0.1)) & satisfeita por todas as abordagens.

Finalmente, para verificar o impacto de erros na predighoaliga de chegada,
rodamos simulacdes com diferentes intervalos de canprarla ccerério 2. Nos escolhe-
mos duracdes de intervalos que nao coincidem com ositestaos quais a carga muda.
Para intervalos com duracoes de 300 e 600 segundos, audtawndo lucro comparado
com os resultados mostrados na figura 6-a & apenas 5% (8%} €15%), respectiva-
mente, para o0 modelo hipoexponencial (Chebyshev). Conokique nossa solucao &
razoavelmente robusta a erros de predicao de carga.

5.3. Perfis de Carga Realistas

Nesta secao avaliamos as abordagens de geréncia dalealegrara cargas mais realistas.
Construimos novas cargas a partir de logs contendo o ninearioegadas, para intervalos
de 5 minutos, de 4 aplicacdes reais de comércio elewdmpior um periodo de 3 meses
(de 23/11/2004 a 23/2/2005). Acordos de confidencialidadampedem de informar as
fontes. Todos os quatro logs possuem perfis similares, cons pios mesmos instantes.
Taxas de requisi¢cao variam muito, com pico de 17 e umaaralD.078 requisicdes por
segundo. A figura 7-a mostra a variacao da taxa de chegadaipe classe num dia
tipico. Cargas realistas sao construidas assumindagjuequisicdoes seguem processos
Poisson, com taxas mudando a cada intervalo de 5 minutasleasmos logs.

Dois novos cenarios sao considerados.cdrio 3, simulamos as 4 classes dos
nossos logs. @erario 4 usa um numero maior, 8, de aplicacdes, cujas cargasoso C
truidas duplicando cada um dos 4 logs originais, e destlican requisicdes duplicadas
6 horas para o futuro. O tempo médio de servico em cada Gaéascolhido de forma a
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fazé-la sub-provisionada para atender a carga agreg#eta. ddsso, a demanda agregada
em cada camada bem como os requisitos de taxa de processaneointrato sao fixos
e dados nas tabelas 3 e 4. O intervalo de controle & ajustaidd® pninutos.

As distribuicdes acumuladas do balan¢co para ambos @siosrestao mostrados
nas figuras 7-b e 7-c. A abordagem hipoexponencial resutanathores balancos. No
cenario 3, a estratégia estatica &€ tao boa quanto a&xppoencial. Os perfis de carga
muito similares das quatro aplicacdes deixam pouco,espa@ ganhos devido ao ge-
renciamento dinamico. Note, porém, a degradacaofgigtiva no cenario 4, que tem
mais oportunidades de alocacao dinamica de capaciaddeas 8 classes. Neste caso, a
abordagem hipoexponencial resulta em aumento de 429% adoeatiotal.

Como no cenario 2, a abordagem hipoexponencial apreseeliaomcusto-
beneficio do que a abordagem Chebyshev, levando a ganttle 26% no retorno
médio diario nos cenarios 3 e 4, respectivamente. Noktana abordagem de camada
Unica & sobrepujada por ordens de magnitude.

6. Concluses e Trabalhos Futuros

Neste artigo apresentamos um arcabouc¢o auto-adaptaigergnciamento de capaci-
dade para sistemas virtualizados multi-camadas. Ele mggléa um modelo de desem-
penho de mdltiplas filas preciso, que captura gargaloscégmes de aplicacao e o pa-
ralelismo inerente a arquiteturas multi-camadas. Noamm$ simulacdes para varios
cenarios. Nossas principais conclusdes sao trés.eRdmmossa solucao auto-adaptativa
multi-camadas é escalavel e significativamente maiseetieique alocacao estatica para
cargas pesadas e desbalanceadas. Segundo, o modelo dpatdsesimplificado e im-
preciso de camada Unica leva a decisdes de alocacaercadsras, que comprometem
sua eficiéncia. Finalmente, nossa abordagem multi-casréadzbusta e pode ser aplicada
para geréncia de capacidade de ambientes virtualizagotsia variacao de capacidade.

DirecOes para trabalhos futuros incluem: (a) estendssa®modelos para dife-
rentes padrdes de trafegos de aplicacao e modelar msoscde cada camada individu-
almente; (b) incluir custos operacionais e de geréncier@gs); (c) conceber modelos de
negocio mais ricos; e (d) avaliacao adicional da aplictdzle do nosso arcabouc¢o para
ambientes virtualizados sob ataques.
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