

CompSci 401: Cloud Computing Introduction

Prof. Ítalo Cunha

Introduction

- Ítalo Cunha <cunha@dcc.ufmg.br>
 - B.Sc. from UFMG, Brazil (2004)
 - M.Sc. from UFMG, Brazil (2007)
 - Ph.D. from UPMC Sorbonne, France (2011)
 - Professor at UFMG since 2012
 - Post-doc at Columbia University in 2019

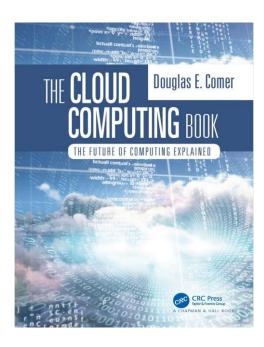
Introduction

- Ítalo Cunha <cunha@dcc.ufmg.br>
 - Interest Areas
 - Computer Networks
 - Distributed Systems
 - Operating Systems
 - Cybersecurity
 - Research
 - Internet routing (traffic engineering, monitoring, and modeling)
 - Network security (monitoring, characterizing, and tracking malicious activities)
 - Network performance (congestion controls and transport optimizations)

Course Goals

- Understand the cloud computing paradigm in general
 - Underlying technologies
 - Core concepts
 - Availability, performance, and cost trade-offs
- Learn how to build applications in the cloud
 - Containerization and virtualization
 - Serverless, function-based, and stream computing
 - Microservices
 - Automation, continuous integration, and continuous delivery
- Get experience with data analysis in the cloud

How you may apply the concepts in this course


- Developers
 - Many applications today run totally on the cloud
 - Most applications have some functionality that runs on the cloud
- Data scientists
 - Many data science processes run or can benefit from the cloud
 - A data science task can be approach in different ways, need to choose
- Managers and software architects
 - Choosing how and where a solution should be built is key

Course Requirements

- Important
 - Experience with coding algorithms and programs (CompSci 201)
 - We will use Java, Python, and Bash
- Beneficial
 - Familiarity with computer architecture concepts (CompSci 205)
 - Familiarity with manipulating large datasets (CompSci 301)
 - Familiarity with computer network concepts (CompSci 311)

Planned Activities

- Lectures covering concepts
 - The Cloud Computing Book: The Future of Computing Explained. Douglas Comer. Chapman and Hall/CRC, 1st ed.
 - Classes and pre-recorded videos
- Reading of conference papers covering select topics in depth
 - Students will choose a topic and record a short video about it
- Programming assignments
 - Hands-on practice with cloud computing technologies
- Midterm and final exams
 - Focusing on concepts (lecture content)
 - But also covering practical knowledge (assignments)

Course Structure

- Week 1: Foundations, motivation, use cases, services, infrastructure
- Week 2: Virtualization
- Week 3: Cloud and distributed storage
- Week 4: Automation, monitoring, and orchestration
- Week 5: Programming paradigms
- Week 6: DevOps, security, privacy
- Week 7: Data analytics in the cloud

Assignments

- Assignment 1: Cloud computing paradigms
 - MapReduce
 - Spark
- Assignment 2: Building cloud-native applications
 - Containerization
 - Continuous Integration
 - Autoscaling
- Assignment 3: Stream processing
 - Serverless functions
 - Data handling
- Assignment 1b: Data analytics in the cloud

Assignments

- We will use open-source frameworks in our assignments
- But students can try out commercial offerings for the technologies used in the assignments from cloud providers
 - Alibaba Cloud
 - Amazon AWS
 - Google Cloud
 - IBM Cloud
 - Microsoft Azure
 - Oracle Cloud
- All cloud providers have *free tier* services or *academic accounts* you can use to try out the technologies in the assignments

Grading

• Assignments: 45%

• Midterm: 15%

• Final exam: 30%

• Video: 10%

Suggestions Are Welcome

• Please e-mail me your suggestions as early as possible

Books

- The Cloud Computing Book: The Future of Computing Explained Douglas Comer. Chapman and Hall/CRC, 1st ed Available from the university library.
- Cloud Computing for Science and Engineering lan Foster and Dennis B. Gannon. MIT Press, 1st ed https://cloud4scieng.org/chapters
- Learning Spark
 J. S. Damji, B. Wenig, T. Das, and D.Lee. O'Reilly, 2nd ed https://databricks.com/p/ebook/learning-spark-from-oreilly
- Mining of Massive Datasets
 J. Leskovec, A.Rajaraman, and J. Ullman. Cambridge Univ. Press, 3rd ed
 http://www.mmds.org