

CompSci 401: Cloud Computing

Elastic Computing

Prof. Ítalo Cunha

Elastic Computing

- Cloud tenants can increase and decrease the amount of resources they lease on demand
- How does a cloud provider support this?

Elastic Computing

- Cloud tenants can increase and decrease the amount of resources they lease on demand
- How does a cloud provider support this?
 - Need fine-grained allocations
 - Amazon EC2 has hundreds of instance types (t2.nano has 1 vCPU and 0.5 GiB RAM)
 - Need to reallocate resources from one tenant to another seamlessly

Elastic Computing

- Cloud tenants can increase and decrease the amount of resources they lease on demand
- How does a cloud provider support this?
 - Need fine-grained allocations
 - Amazon EC2 has hundreds of instance types (t2.nano has 1 vCPU and 0.5 GiB RAM)
 - Need to reallocate resources from one tenant to another seamlessly
 - Allocating physical resources will fail on both accounts

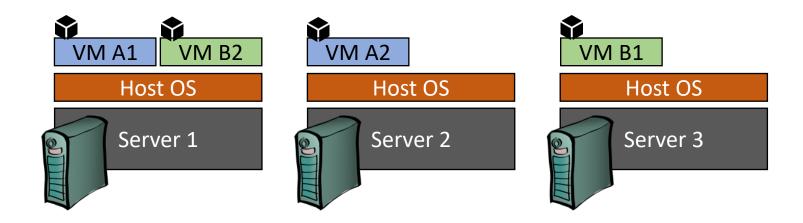
Virtualization for rapid change

- Virtualization is the technology that supports virtual machines (VM) and containers
- Virtual machines have the following properties:
 - Rapid creation and removal
 - Controlled by software; physical machine and host operating system are not impacted

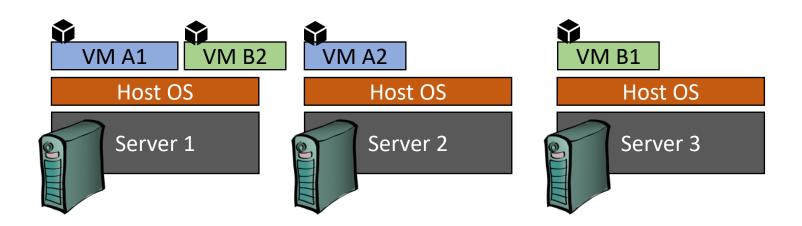
Virtualization for rapid change

- Virtualization is the technology that supports virtual machines (VM) and containers
- Virtual machines have the following properties:
 - Rapid creation and removal
 - Controlled by software; physical machine and host operating system are not impacted
 - Physical sharing
 - Multiple VMs can run on the same physical server

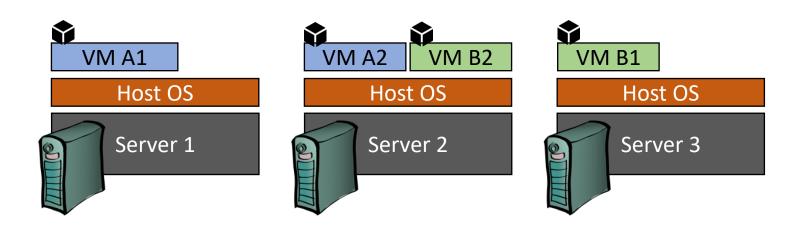
Virtualization for rapid change


- Virtualization is the technology that supports virtual machines (VM) and containers
- Virtual machines have the following properties:
 - Rapid creation and removal
 - Controlled by software; physical machine and host operating system are not impacted
 - Physical sharing
 - Multiple VMs can run on the same physical server
 - Logical isolation
 - VMs running on the same server cannot interact in any way
 - Programs on one VMs are not impacted by programs running in other VMs
 - Data on one VM cannot be accessed by other VMs

- Software control over creation, removal and modification
 - No human action involved
 - Physical servers
 - Rarely reboot
 - Only need to shut down to save energy
 - Can host multiple virtual machines
 - Virtual machines
 - Can be paused or migrated to a different server (e.g., due to failures)
 - Take seconds to create instead of hours to deploy a physical server

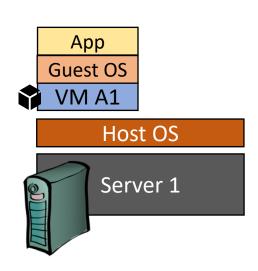

- Isolation
 - Cloud providers can place VMs on any server
 - VMs from multiple tenants can coexist on the same server
 - No interference, for example when a tenant's application misbehaves or crashes
 - No data "leaks" from one VM to another
 - Provider is oblivious to the owner, the applications they run, or the data they handle

- Software control and isolation provide flexibility
 - Cloud provider can choose where to create VMs
 - Balance load across servers to minimize complaints
 - Maximize server utilization to reduce energy expenses


- Software control and isolation provide flexibility
 - Cloud provider can choose where to create VMs
 - Balance load across servers to minimize complaints
 - Maximize server utilization to reduce energy expenses
 - Cloud provider can migrate VMs
 - VMs can be migrated away from overloaded of failing servers

- Software control and isolation provide flexibility
 - Cloud provider can choose where to create VMs
 - Balance load across servers to minimize complaints
 - Maximize server utilization to reduce energy expenses
 - Cloud provider can migrate VMs
 - VMs can be migrated away from overloaded of failing servers
 - VMs can be migrated away from underloaded servers to power them off and save energy

- Software control and isolation provide flexibility
 - Cloud provider can choose where to create VMs
 - Balance load across servers to minimize complaints
 - Maximize server utilization to reduce energy expenses
 - Cloud provider can migrate VMs
 - VMs can be migrated away from overloaded of failing servers
 - VMs can be migrated away from underloaded servers to power them off and save energy


How virtualization aids customers

- A VM is mostly equivalent to a physical server
- Users have complete control over
 - Some hardware (e.g., direct access to network cards or GPUs)
 - Operating system (Linux distribution, Windows)
 - Applications

How virtualization aids customers

- A VM is mostly equivalent to a physical server
- Users have complete control over
 - Some hardware (e.g., direct access to network cards or GPUs)
 - Operating system (Linux distribution, Windows)
 - Applications
- VMs can communicate over the Internet
 - Serve users anywhere

How virtualization aids customers

- Ease of creating and deploying new services
 - Software can be deployed as soon as it is developed
 - Cloud providers have tooling to automate or ease software deployment, possibly to multiple VMs
- Rapid scaling of a service
 - Service capacity can be increased or decreased as a function of demand by creating or removing VMs
- Safe and rapid testing of new software
 - Organizations can test new software before deployment in a controlled but equivalent infrastructure using VMs

CompSci 401: Cloud Computing

Business Models

Prof. Ítalo Cunha

Cloud provider structure

- How to generate revenue?
- What is the best structure for companies in the cloud industry?
- Should providers handle or delegate management of
 - Physical facilities (air conditioning, power, security)?
 - Computing facilities (network, servers, software)?

Classes of cloud services

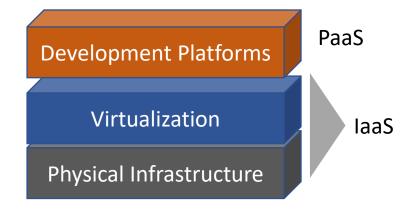
- Loose definitions and some overlap
- Help delineate what each company handles and what tenants handle

- Physical resources
 - Building, power, air conditioning
 - Servers, network equipment, data storage, load balancers

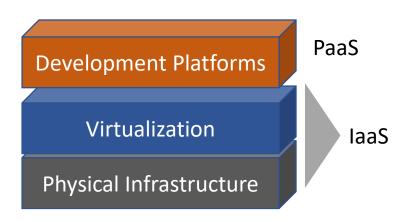
- Physical resources
 - Building, power, air conditioning
 - Servers, network equipment, data storage, load balancers
- Virtualized resources equivalent to physical resources
 - Virtual machines, virtual networking, block storage, load balancers

- Physical resources
 - Building, power, air conditioning
 - Servers, network equipment, data storage, load balancers
- Virtualized resources equivalent to physical resources
 - Virtual machines, virtual networking, block storage, load balancers
- Complete control
 - Users have full control of operating systems and applications

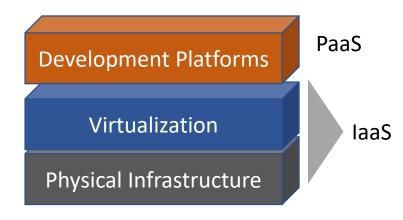
- Physical resources
 - Building, power, air conditioning
 - Servers, network equipment, data storage, load balancers
- Virtualized resources equivalent to physical resources
 - Virtual machines, virtual networking, block storage, load balancers
- Complete control
 - Users have full control of operating systems and applications
- IaaS provider can provide complementary services
 - Autoscaling
 - Disk backups



- Physical resources
 - Building, power, air conditioning
 - Servers, network equipment, data storage, load balancers
- Virtualized resources equivalent to physical resources
 - Virtual machines, virtual networking, block storage, load balancers
- Complete control
 - Users have full control of operating systems and applications
- IaaS provider can provide complementary services
 - Autoscaling
 - Disk backups
- Examples: AWS, GCE, Azure, DigitalOcean, Linode


Platform as a Service (PaaS)

- Facility to allow customer to build and deploy software
 - Provider manages the facility and infrastructure for the customer
 - Provide compilers, libraries, middleware, automation of common tasks
 - Customers can focus entirely on their application

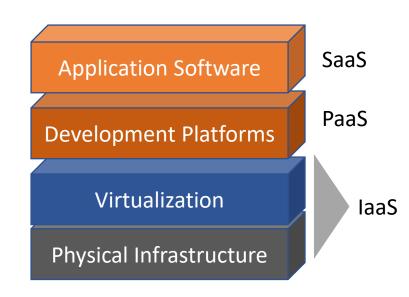

Platform as a Service (PaaS)

- Facility to allow customer to build and deploy software
 - Provider manages the facility and infrastructure for the customer
 - Provide compilers, libraries, middleware, automation of common tasks
 - Customers can focus entirely on their application
- Customer does not have control of lower layers
 - Operating system is fixed
 - Options at each layer of the application may be limited

Platform as a Service (PaaS)

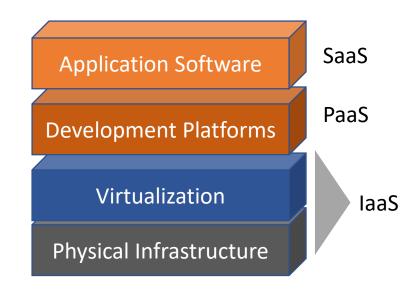
- Facility to allow customer to build and deploy software
 - Manage the facility and infrastructure for the customer
 - Provide compilers, libraries, middleware, automation of common tasks
 - Customers can focus entirely on their application
- Customer does not have control of lower layers
 - Operating system is fixed
 - Options at each layer of the application may be limited
- Examples: Google App Engine, Heroku,
 Windows Azure, AWS Elastic Beanstalk

Example: AWS Elastic Beanstalk


- From the introductory video:
 - "easy to use service to deploy and scale Web servers"
 - Specific type of apps
 - "using Java, .Net, Node.js, Python"
 - Selection of languages and frameworks
 - "familiar services like Nginx and IIS"
 - Limitations on infrastructure
 - "without you spending time managing and configuring infrastructure"
 - Given the constraints, PaaS provider manages everything but the application

PaaS limitations and concerns

- Lack of flexibility
 - The set of available functionality may be inadequate
 - Language or middleware of choice may not be supported
 - Legacy applications may be left out entirely
- Vendor lock-in
 - There are some common standards, but solutions may differ across PaaS providers


Service as a Service (SaaS)

- Subscription model where customers pay a fee
- SaaS offerings rely on laaS to support arbitrarily many customers
- Universal access
 - Accessed from desktops, laptops, tablets, phones, or even servers
 - Web apps
- Guaranteed synchronization
 - Even when data are modified by multiple devices
 - All state kept in the cloud
 - Identical data across all devices, no "conflicts"
- High availability
 - Reliance on IaaS ensures redundancy and resilience against failures

Service as a Service (SaaS)

- Examples:
 - Office 365
 - Evernote
 - DotA Plus
 - Todoist
 - Google Workspace
 - Dropbox
 - Salesforce
 - Zoom
- Applications run on the browser or cell phone
 - Also called "thin clients" because data and heavy computation remain on the cloud

SaaS limitations and concerns

Set features

- The set of features and development effort is set by the provider
- Limited customization
- Lack of control

Interoperability

- SaaS applications may not be designed to adhere to open standards
- May be hard or impossible to integrate with in-house applications

Vendor lock-in

It may be hard to get your data out of the application

	Private Cloud	laaS	PaaS	SaaS
Servers				
Network				
Storage				
Virtualization				
O/S				
Middleware				
Data				
Applications				

You manage

Cloud provider manages