Sistemas Operacionais
TP2: Sincronizagao de processos

Trabalho individual ou em dupla.

Data de entrega: verifique o |calendario do curso
(Politica de penalizagao por atraso na pagina do curso)
Ultima alteracao: 18 de maio de 2013

Este trabalho tem por objetivo fazer com que os alunos experimentem na
pratica a programacao de problemas de sincronizagao entre processos e os efeitos
da programacao concorrente. Isso deve ser feito utilizando-se os recursos de
threads POSIX (pthreads) — em particular, mutexes (pthread mutex t) e
varidveis de condi¢do (pthread_cond_t).

O problema

Sheldon, Leonard e Howard compraram um micro-ondas juntos (tempos dificeis).
Para decidir quem podia usar o forno, definiram o seguinte conjunto de regras:

e se o micro-ondas estiver liberado, quem chegar primeiro pode usar;

caso contrario, obviamente, quem chegar depois tem que esperar;

se mais de uma pessoa estiver esperando para usar, valem as precedéncias:

— Sheldon pode usar antes do Howard;
— Howard pode usar antes do Leonard;

— Leonard pode usar antes do Sheldon.

quando alguém termina de usar o forno, deve liberd-lo para a préxima
pessoa de maior prioridade, exceto em dois casos:

— para evitar inani¢ao (discutido a seguir);

— quando houver deadlock (um ciclo de prioridades).

Como agora eles tém namoradas (Leonard tem a Penny, Howard tem a Bernardette
e Sheldon tem a Amy, caso vocé nédo saiba), elas entram no esquema do forno da
seguinte forma: cada namorada tem a mesma prioridade do namorado. Sé que
se os dois quiserem usar o micro-ondas, um tem que esperar depois do outro.
(Quer dizer, se Penny, Leonard e Howard estiverem esperando para esquentar
algo e ninguém mais chegar, Howard usa primeiro, depois Penny ou Leonard,
dependendo de quem chegou primeiro; mas se a Bernardette chegasse antes do
Howard acabar, ela teria preferéncia de usar em seguida.

Isso pode levar a inanicao em casos de uso intenso do forno, dai é preciso
criar uma regra para resolver o problema: se o casal usar o forno em seguida, o
segundo é obrigado a ceder a vez para um membro do casal que normalmente


curso.html

teria que esperar por eles. Obviamente, o segundo membro do casal s6 pode
usar o forno se nesse meio tempo nao chegar alguém com maior prioridade.

Cada personagem, como os filésofos daquele problema, dividem seu tempo
entre periodos em que fazem outras coisas e periodos em que resolvem esquentar
algo para comer. O tempo que cada um gasta com outras coisas varia entre 3 e
6 segundos e usar o forno gasta um segundo. (Os tempos das outras coisas sdo
apenas uma referéncia, vocé pode experimentar tempos um pouco diferentes,
se for mais adequado. Certifique-se de que em alguns casos esses tempos sejam
suficientes para gerar alguns deadlocks de vez em quando, bem como situagoes
que exijam o mecanismo de prevenc¢ao de inanigao.

Se vocé reparar as precedéncias definidas, vai notar que é possivel ocorrer
um deadlock — é, eles sabem, mas sao muito teimosos para mudar. Para evitar
isso, o Raj periodicamente (a cada 5 segundos) confere a situacao e, se encontrar
o pessoal travado, pode escolher um deles aleatoriamente e libera-lo para usar
o forno.

Implementacao

Sua tarefa neste trabalho é implementar os personagens do Big Bang Theory
como threads e implementar o forno como um monitor usando pthreads, mutexes
e variaveis de condicao.

Parte da solugao requer o uso de uma mutex para o forno, que servira como
a trava do monitor para as operacoes que os personagens podem fazer sobre
ele. Além da mutex, vocé precisard de um conjunto de varidveis de condig@o
para controlar a sincronizacao do acesso dos casais ao forno: uma variavel para
enfileirar o segundo membro de um casal se o outro j& estiver esperando, e outra
variavel de condi¢ao para controlar as regras de precedéncia no acesso direto ao
forno.

O programa deve criar os sete personagens e receber como parametro o
nimero de vezes que eles vao tentar usar o forno — afinal, ndo d4 para ficar
assistindo eles fazerem isso para sempre. Ao longo da execugao o programa deve
entao mostrar mensagens sobre a evolu¢ao do processo. Por exemplo:

$ ./bbtmwov 2

Sheldon quer usar o forno
Sheldon comega a esquentar algo
Leonard quer usar o forno
Howard quer usar o forno

Amy quer usar o formo

Sheldon vai comer

Penny quer usar o forno

Raj detectou um deadlock, liberando Howard
Howard comega a esquentar algo
Sheldon quer usar o formo
Howard vai comer

Leonard comega a esquentar algo



Leonard vai comer

Penny comega a usar o forno
Leonard quer usar o forno
Amy comega a usar o forno

Nota: a ordem dos eventos acima deve variar entre execugoes e imple-
mentagoes. Vocé nao deve esperar ter exatamente o mesmo resultado.
Sumarizando:

e membros do mesmo casal esperam um atras do outro para usar o forno;

e as regras de preferéncia definidas acima valem a nao ser que um casal
tenha que ceder a vez;

e deadlock deve ser resolvido pela atuacao do Raj;
e inanicao deve ser evitada pela regra do casal ceder a vez.

Para implementar a solucdo, analise as agoes de cada personagem em difer-
entes circunstancias, como o outro membro do casal ja estd esperando, ha alguém
com mais prioridade esperando, hd alguém com menos prioridade esperando.
Determine o que fazer quando alguém decide que quer usar o forno e tem alguém
de maior prioridade, o que fazer quando terminam de usar o forno, etc.

Consulte as paginas de manual no Linux para entender as fungbes da bib-
lioteca para mutexes e variaveis de condigao:

e int pthread mutex_init(pthread mutex_t *mutex, const pthread mutexattr_t
*attr) ;

e int pthread mutex_lock(pthread mutex_t *mutex);
e int pthread mutex_unlock(pthread mutex_t *mutex);
e int pthread mutex_destroy(pthread mutex_t *mutex);

e int pthread_cond_init(pthread cond_t *cond, const pthread condattr_t
*xattr)

e int pthread_cond_signal(pthread_cond-t *cond);
e int pthread_cond wait(pthread cond_t *cond, pthread mutex_t *mutex)

e int pthread_cond destroy(pthread cond_t *cond) ;

Como mencionado anteriormente, vocé deve usar uma mutex para imple-
mentar a funcionalidade equivalente a um monitor, isto é, as operagoes sobre
o forno serdo parte de um monitor. Na prética, isso serda implementado em C,
mas deverd ter a funcionalidade equivalente a:



monitor formno

{

};

... // varidveis compartilhadas, varidveis de condig&o

esperar (personagem p) {
printf("%s quer usar o forno\n", nome(b.num));
... // verifica quem mais quer usar, contadores, varidveis de cond., etc.

}

liberar (personagem p) {
printf("%s vai comer\n", nome(b.num));
... // verifica se tem que liberar alguém, atualiza contadores, etc.

}

verificar() {
... // Raj verifica se ha deadlock e corrige-o

b

/%

* ATENGAO: em uma versdo anterior do enunciado, usar o forno era parte do
* monitor, mas isso ndo é a melhor forma: como todos os personagens s&o
* bem comportados, eles obededem a regra e usar o forno nfo precisa

* (nem deve) ser implementado como exclus&o mitua, dentro do monitor.

*/

Os personagens com namoradas(os) executam as seguintes operagdes um

certo nimero de vezes (definido pelo pardmeto de execugao do programa):

forno.esperar(p);

esquentar_algo(p); /* nfo exige exclusfo mitua */
forno.liberar(p);

comer (p) ; // espera um certo tempo aleatdrio

Use drand48() (confira a pagina do manual) para gerar nimeros aleatérios

entre 0 e 1, use uma multiplicacao para gerar inteiros aleatorios.

O Raj executa as seguintes operagoes:

enquanto personagens estdo ativos faga

sleep(5);
forno.verificar();

Informacgoes tuteis

Forma de operagao

0)

seu programa deve basicamente criar uma threa para cada personagem e

esperar que elas terminem. Cada personagem executa um loop um certo nimero



de vezes (pardmetro da linha de comando), exceto Raj, que deve executar seu
loop até que todos os outros personagens tenham acabado.

Codificacao dos personagens

Vocé deve buscar ter um cédigo elegante e claro. Em particular, note que o
comportamento dos casais é basicamente o mesmo, vocé nao precisa replicar o
c6digo para diferencia-los. Além disso, o comportamento de todos os person-
agens (exceto o Raj) é tdo similar que vocé deve ser capaz de usar apenas uma
funcao para todos eles, parametrizada por um nimero, que identifique cada
personagem. As prioridades podem ser descritas como uma lista circular.

Acesso as paginas de manual

Para encontrar informacGes sobre as rotinas da biblioteca padrao e as chamadas
do sistema operacional, consulte as paginas de manual online do sistema (usando
o comando Unix man ). Vocé também vai verificar que as paginas do manual sdo
lteis para ver que arquivos de cabegalho que vocé deve incluir em seu programa.
Em alguns casos, pode haver um comando com o mesmo nome de uma chamada
de sistema; quando isso acontece, vocé deve usar o niimero da se¢do do manual
que vocé deseja: por exemplo, man read mostra a pagina de um comando da
shell do Linux, enquanto man 2 read mostra a pagina da chamada do sistema.

Processamento da entrada

Nao hé entrada neste programa além do parametro de execugao do programa.
Certifique-se de verificar o c6digo de retorno de todas as rotinas de bibliotecas
e chamadas do sistema para verificar se ndo ocorreram erros! (Se vocé ver um
erro, a rotina perror() é ttil para mostrar o problema.) Vocé pode achar
o strtok() ttil para analisar a linha de comando (ou seja, para extrair os
argumentos dentro de um comando separado por espagos em branco).

Manipulagao de argumentos de linha de comando

Os argumentos que sao passados para um processo na linha de comando sao
visiveis para o processo através dos parametros da fungao main():

int main (int argc, char * argv []);

o parametro argc contém um a mais que o nimero de argumentos passados e
argv é um vetor de strings, ou de apontadores para caracteres.

Processo de desenvolvimento

Lembre-se de conseguir fazer funcionar a funcionalidade basica antes de se pre-
ocupar com todas as condicdes de erro e os casos extremos. Por exemplo,
primeiro foque no comportamento de um personagem e certifique-se de que
ele funciona. Depois dispare dois personagens apenas, para evitar que dead-
locks acontegam. Verifique se os casais funcionam, inclua o Raj e verifique se



deadlocks sdo detectados (use um pouco de criatividade no controle dos tempos
das outras atividades para forcar um deadlock). Finalmente, certifique-se que o
mecanismo de prevengao da inanigao funciona (p.ex., use apenas dois casais de
altere os tempos das outras atividades para fazer com que um deles (o de maior
prioridade) esteja sempre querendo usar o forno. Exercite bem o seu préprio
cédigo! Voceé é o melhor (e neste caso, o tnico) testador dele.

Mantenha versoes do seu cédigo. Programadores mais avancados utilizam
um sistema de controle de versoes, tal como RCS, CVS ou SVN. Ao menos,
quando vocé conseguir fazer funcionar uma parte da funcionalidade do tra-
balho, faga uma cépia de seu arquivo C ou mantenha diretérios com nimeros
de versao. Ao manter versdes mais antigas, que vocé sabe que funcionam até
um certo ponto, vocé pode trabalhar confortavelmente na adigao de novas fun-
cionalidades, seguro no conhecimento de que vocé sempre pode voltar para uma
versao mais antiga que funcionava, se necessario.

O que deve ser entregue

Vocé deve entregar no moodle um arquivo .zip ou .tgz contendo o(s) arquivo(s)
contendo o cddigo fonte do programa (.c e .h), um Makefile e um relatério
sobre o seu trabalho, que deve conter:

e Um resumo do projeto: alguns pardgrafos que descrevam a estrutura geral
do seu cédigo e todas as estruturas importantes.

e Decisoes de projeto: descreva como vocé lidou com quaisquer ambigu-
idades na especificagao.

e Bugs conhecidos ou problemas: uma lista de todos os recursos que vocé nao
implementou ou que vocé sabe que nao estao funcionando corretamente

Nao inclua a listagem do seu cédigo no relatério; afinal, vocé ja
vai entregar o cédigo fonte!

Finalmente, embora vocé possa desenvolver o seu codigo em qualquer sistema
que quiser, certifique-se que ele execute corretamente na maquina virtual com
o sistema operacional Linux que foi distribuida no inicio do curso. A avaliagao
do seu funcionamento sera feita naquele ambiente.

Consideracoes finais

Este trabalho nao é tao complexo quanto pode parecer a primeira vista. Talvez
o codigo que vocé escreva seja mais curto que este enunciado. Escrever o seu
monitor serd uma questao de entender o funcionamento das fungées de pthreads
envolvidas e utilizé-las da forma correta. O programa final deve ter apenas
algumas dezenas de linhas de c6digo, talvez umas poucas centenas. Se voceé se ver
escrevendo codigo mais longo que isso, provavelmente é uma boa hora para parar
um pouco e pensar mais sobre o que vocé estd fazendo. Entretanto, dominar
os principios de funcionamento e utilizacdo das chamadas para manipulacao de



varidveis de condicao e mutexes e conseguir a sincronizacao exata desejada pode
exigir algum tempo e esforco.

1. Duvidas: usem o moodle (minha.ufmg).

2. Comece a fazer o trabalho logo, pois apesar do programa final ser relati-
vamente pequeno, o tempo nao é muito e o prazo de entrega nao vai ficar
maior do que ele é hoje (independente de que dia é hoje).

3. Vao valer pontos clareza, qualidade do cédigo e da documentacao e, obvia-
mente, a execugao correta da chamada do sistema com programas de teste.
A participacao nos féruns de forma positiva também serd considerada.

Ultima alteracio: 18 de maio de 2013



