
Sistemas Operacionais

TP2: Sincronização de processos

Trabalho individual ou em dupla.

Data de entrega: verifique o calendário do curso
(Poĺıtica de penalização por atraso na página do curso)

Última alteração: 18 de maio de 2013

Este trabalho tem por objetivo fazer com que os alunos experimentem na
prática a programação de problemas de sincronização entre processos e os efeitos
da programação concorrente. Isso deve ser feito utilizando-se os recursos de
threads POSIX (pthreads) — em particular, mutexes (pthread mutex t) e
variáveis de condição (pthread cond t).

O problema

Sheldon, Leonard e Howard compraram um micro-ondas juntos (tempos dif́ıceis).
Para decidir quem podia usar o forno, definiram o seguinte conjunto de regras:

• se o micro-ondas estiver liberado, quem chegar primeiro pode usar;

• caso contrário, obviamente, quem chegar depois tem que esperar;

• se mais de uma pessoa estiver esperando para usar, valem as precedências:

– Sheldon pode usar antes do Howard;

– Howard pode usar antes do Leonard;

– Leonard pode usar antes do Sheldon.

• quando alguém termina de usar o forno, deve liberá-lo para a próxima
pessoa de maior prioridade, exceto em dois casos:

– para evitar inanição (discutido a seguir);

– quando houver deadlock (um ciclo de prioridades).

Como agora eles têm namoradas (Leonard tem a Penny, Howard tem a Bernardette
e Sheldon tem a Amy, caso você não saiba), elas entram no esquema do forno da
seguinte forma: cada namorada tem a mesma prioridade do namorado. Só que
se os dois quiserem usar o micro-ondas, um tem que esperar depois do outro.
(Quer dizer, se Penny, Leonard e Howard estiverem esperando para esquentar
algo e ninguém mais chegar, Howard usa primeiro, depois Penny ou Leonard,
dependendo de quem chegou primeiro; mas se a Bernardette chegasse antes do
Howard acabar, ela teria preferência de usar em seguida.

Isso pode levar à inanição em casos de uso intenso do forno, dáı é preciso
criar uma regra para resolver o problema: se o casal usar o forno em seguida, o
segundo é obrigado a ceder a vez para um membro do casal que normalmente

1

curso.html


teria que esperar por eles. Obviamente, o segundo membro do casal só pode
usar o forno se nesse meio tempo não chegar alguém com maior prioridade.

Cada personagem, como os filósofos daquele problema, dividem seu tempo
entre peŕıodos em que fazem outras coisas e peŕıodos em que resolvem esquentar
algo para comer. O tempo que cada um gasta com outras coisas varia entre 3 e
6 segundos e usar o forno gasta um segundo. (Os tempos das outras coisas são
apenas uma referência, você pode experimentar tempos um pouco diferentes,
se for mais adequado. Certifique-se de que em alguns casos esses tempos sejam
suficientes para gerar alguns deadlocks de vez em quando, bem como situações
que exijam o mecanismo de prevenção de inanição.

Se você reparar as precedências definidas, vai notar que é posśıvel ocorrer
um deadlock — é, eles sabem, mas são muito teimosos para mudar. Para evitar
isso, o Raj periodicamente (a cada 5 segundos) confere a situação e, se encontrar
o pessoal travado, pode escolher um deles aleatoriamente e liberá-lo para usar
o forno.

Implementação

Sua tarefa neste trabalho é implementar os personagens do Big Bang Theory
como threads e implementar o forno como um monitor usando pthreads, mutexes
e variáveis de condição.

Parte da solução requer o uso de uma mutex para o forno, que servirá como
a trava do monitor para as operações que os personagens podem fazer sobre
ele. Além da mutex, você precisará de um conjunto de variáveis de condição
para controlar a sincronização do acesso dos casais ao forno: uma variável para
enfileirar o segundo membro de um casal se o outro já estiver esperando, e outra
variável de condição para controlar as regras de precedência no acesso direto ao
forno.

O programa deve criar os sete personagens e receber como parâmetro o
número de vezes que eles vão tentar usar o forno — afinal, não dá para ficar
assistindo eles fazerem isso para sempre. Ao longo da execução o programa deve
então mostrar mensagens sobre a evolução do processo. Por exemplo:

$ ./bbtmwov 2

Sheldon quer usar o forno

Sheldon começa a esquentar algo

Leonard quer usar o forno

Howard quer usar o forno

Amy quer usar o forno

Sheldon vai comer

Penny quer usar o forno

Raj detectou um deadlock, liberando Howard

Howard começa a esquentar algo

Sheldon quer usar o forno

Howard vai comer

Leonard começa a esquentar algo

2



Leonard vai comer

Penny começa a usar o forno

Leonard quer usar o forno

Amy começa a usar o forno

...

Nota: a ordem dos eventos acima deve variar entre execuções e imple-
mentações. Você não deve esperar ter exatamente o mesmo resultado.

Sumarizando:

• membros do mesmo casal esperam um atrás do outro para usar o forno;

• as regras de preferência definidas acima valem a não ser que um casal
tenha que ceder a vez;

• deadlock deve ser resolvido pela atuação do Raj;

• inanição deve ser evitada pela regra do casal ceder a vez.

Para implementar a solução, analise as ações de cada personagem em difer-
entes circunstâncias, como o outro membro do casal já está esperando, há alguém
com mais prioridade esperando, há alguém com menos prioridade esperando.
Determine o que fazer quando alguém decide que quer usar o forno e tem alguém
de maior prioridade, o que fazer quando terminam de usar o forno, etc.

Consulte as páginas de manual no Linux para entender as funções da bib-
lioteca para mutexes e variáveis de condição:

• int pthread mutex init(pthread mutex t *mutex, const pthread mutexattr t

*attr);

• int pthread mutex lock(pthread mutex t *mutex);

• int pthread mutex unlock(pthread mutex t *mutex);

• int pthread mutex destroy(pthread mutex t *mutex);

• int pthread cond init(pthread cond t *cond, const pthread condattr t

*attr)

• int pthread cond signal(pthread cond t *cond);

• int pthread cond wait(pthread cond t *cond, pthread mutex t *mutex)

• int pthread cond destroy(pthread cond t *cond);

Como mencionado anteriormente, você deve usar uma mutex para imple-
mentar a funcionalidade equivalente a um monitor, isto é, as operações sobre
o forno serão parte de um monitor. Na prática, isso será implementado em C,
mas deverá ter a funcionalidade equivalente a:

3



monitor forno

{

... // variáveis compartilhadas, variáveis de condiç~ao

esperar(personagem p) {

printf("%s quer usar o forno\n", nome(b.num));

... // verifica quem mais quer usar, contadores, variáveis de cond., etc.

}

liberar(personagem p) {

printf("%s vai comer\n", nome(b.num));

... // verifica se tem que liberar alguém, atualiza contadores, etc.

}

verificar() {

... // Raj verifica se há deadlock e corrige-o

}

/*

* ATENÇ~AO: em uma vers~ao anterior do enunciado, usar o forno era parte do

* monitor, mas isso n~ao é a melhor forma: como todos os personagens s~ao

* bem comportados, eles obededem a regra e usar o forno n~ao precisa

* (nem deve) ser implementado como exclus~ao mútua, dentro do monitor.

*/

};

Os personagens com namoradas(os) executam as seguintes operações um
certo número de vezes (definido pelo parâmeto de execução do programa):

forno.esperar(p);

esquentar_algo(p); /* n~ao exige exclus~ao mútua */

forno.liberar(p);

comer(p); // espera um certo tempo aleatório

Use drand48() (confira a página do manual) para gerar números aleatórios
entre 0 e 1, use uma multiplicação para gerar inteiros aleatórios.

O Raj executa as seguintes operações:

enquanto personagens est~ao ativos faça

sleep(5);

forno.verificar();

Informações úteis

Forma de operação

O seu programa deve basicamente criar uma threa para cada personagem e
esperar que elas terminem. Cada personagem executa um loop um certo número

4



de vezes (parâmetro da linha de comando), exceto Raj, que deve executar seu
loop até que todos os outros personagens tenham acabado.

Codificação dos personagens

Você deve buscar ter um código elegante e claro. Em particular, note que o
comportamento dos casais é basicamente o mesmo, você não precisa replicar o
código para diferenciá-los. Além disso, o comportamento de todos os person-
agens (exceto o Raj) é tão similar que você deve ser capaz de usar apenas uma
função para todos eles, parametrizada por um número, que identifique cada
personagem. As prioridades podem ser descritas como uma lista circular.

Acesso às páginas de manual

Para encontrar informações sobre as rotinas da biblioteca padrão e as chamadas
do sistema operacional, consulte as páginas de manual online do sistema (usando
o comando Unix man ). Você também vai verificar que as páginas do manual são
úteis para ver que arquivos de cabeçalho que você deve incluir em seu programa.
Em alguns casos, pode haver um comando com o mesmo nome de uma chamada
de sistema; quando isso acontece, você deve usar o número da seção do manual
que você deseja: por exemplo, man read mostra a página de um comando da
shell do Linux, enquanto man 2 read mostra a página da chamada do sistema.

Processamento da entrada

Não há entrada neste programa além do parâmetro de execução do programa.
Certifique-se de verificar o código de retorno de todas as rotinas de bibliotecas

e chamadas do sistema para verificar se não ocorreram erros! (Se você ver um
erro, a rotina perror() é útil para mostrar o problema.) Você pode achar
o strtok() útil para analisar a linha de comando (ou seja, para extrair os
argumentos dentro de um comando separado por espaços em branco).

Manipulação de argumentos de linha de comando

Os argumentos que são passados para um processo na linha de comando são
viśıveis para o processo através dos parâmetros da função main():
int main (int argc, char * argv []);

o parâmetro argc contém um a mais que o número de argumentos passados e
argv é um vetor de strings, ou de apontadores para caracteres.

Processo de desenvolvimento

Lembre-se de conseguir fazer funcionar a funcionalidade básica antes de se pre-
ocupar com todas as condições de erro e os casos extremos. Por exemplo,
primeiro foque no comportamento de um personagem e certifique-se de que
ele funciona. Depois dispare dois personagens apenas, para evitar que dead-
locks aconteçam. Verifique se os casais funcionam, inclua o Raj e verifique se

5



deadlocks são detectados (use um pouco de criatividade no controle dos tempos
das outras atividades para forçar um deadlock). Finalmente, certifique-se que o
mecanismo de prevenção da inanição funciona (p.ex., use apenas dois casais de
altere os tempos das outras atividades para fazer com que um deles (o de maior
prioridade) esteja sempre querendo usar o forno. Exercite bem o seu próprio
código! Você é o melhor (e neste caso, o único) testador dele.

Mantenha versões do seu código. Programadores mais avançados utilizam
um sistema de controle de versões, tal como RCS, CVS ou SVN. Ao menos,
quando você conseguir fazer funcionar uma parte da funcionalidade do tra-
balho, faça uma cópia de seu arquivo C ou mantenha diretórios com números
de versão. Ao manter versões mais antigas, que você sabe que funcionam até
um certo ponto, você pode trabalhar confortavelmente na adição de novas fun-
cionalidades, seguro no conhecimento de que você sempre pode voltar para uma
versão mais antiga que funcionava, se necessário.

O que deve ser entregue

Você deve entregar no moodle um arquivo .zip ou .tgz contendo o(s) arquivo(s)
contendo o código fonte do programa (.c e .h), um Makefile e um relatório
sobre o seu trabalho, que deve conter:

• Um resumo do projeto: alguns parágrafos que descrevam a estrutura geral
do seu código e todas as estruturas importantes.

• Decisões de projeto: descreva como você lidou com quaisquer ambigu-
idades na especificação.

• Bugs conhecidos ou problemas: uma lista de todos os recursos que você não
implementou ou que você sabe que não estão funcionando corretamente

Não inclua a listagem do seu código no relatório; afinal, você já
vai entregar o código fonte!

Finalmente, embora você possa desenvolver o seu código em qualquer sistema
que quiser, certifique-se que ele execute corretamente na máquina virtual com
o sistema operacional Linux que foi distribúıda no ińıcio do curso. A avaliação
do seu funcionamento será feita naquele ambiente.

Considerações finais

Este trabalho não é tão complexo quanto pode parecer à primeira vista. Talvez
o código que você escreva seja mais curto que este enunciado. Escrever o seu
monitor será uma questão de entender o funcionamento das funções de pthreads
envolvidas e utilizá-las da forma correta. O programa final deve ter apenas
algumas dezenas de linhas de código, talvez umas poucas centenas. Se você se ver
escrevendo código mais longo que isso, provavelmente é uma boa hora para parar
um pouco e pensar mais sobre o que você está fazendo. Entretanto, dominar
os prinćıpios de funcionamento e utilização das chamadas para manipulacão de

6



variáveis de condição e mutexes e conseguir a sincronização exata desejada pode
exigir algum tempo e esforço.

1. Dúvidas: usem o moodle (minha.ufmg).

2. Comece a fazer o trabalho logo, pois apesar do programa final ser relati-
vamente pequeno, o tempo não é muito e o prazo de entrega não vai ficar
maior do que ele é hoje (independente de que dia é hoje).

3. Vão valer pontos clareza, qualidade do código e da documentação e, obvia-
mente, a execução correta da chamada do sistema com programas de teste.
A participação nos fóruns de forma positiva também será considerada.

Última alteração: 18 de maio de 2013

7


