Sistemas Operacionais
TP3: simulacao de um sistema de meméria virtual

Trabalho individual ou em dupla.

Data de entrega: verifique o |calendario do curso
(Nao serao aceitos trabalhos fora do prazo)

Este trabalho tem por objetivo fazer com que os alunos tenham contato com o tipo de cédigo usado
em simuladores e apliquem os conceitos de meméria virtual vistos em sala de aula.

O problema

Neste trabalho vocé deve implementar um simulador de meméria virtual. Ao contrario dos trabalhos
anteriores, este programa nao se relaciona diretamente com aspectos do sistema operacional, mas dentro
dele vocé devera implementar uma réplica das estruturas de um mecanismo de geréncia de memoria
virtual. De certa forma, este serd um trabalho de programacao “mais tradicional”.

Principio geral

Seu programa deverd ser implementado em C (ndo serdo aceitos recursos de C++, como classes da
biblioteca padrao ou de outras fontes).

O simulador receberd como entrada um arquivo que conterd a sequéncia de enderecos de memdria
acessados por um programa real (na verdade, apenas um pedacinho da sequéncia total de acessos de um
programa). Esses enderegos estarao escritos como nimeros hexadecimais, seguidos por uma letra R ou
W, para indicar se o acesso foi de leitura ou escrita. Ao iniciar o programa, serd definido o tamanho
da memoéria (em quadros) para aquele programa e qual o algoritmo de substituicdo de pédginas a ser
utilizado. O programa deve, entao, processar cada acesso & memoria para atualizar os bits de controle
de cada quadro, detectar falhas de paginas (page faults) e simular o processo de carga e substituigao de
paginas. Durante todo esse processo, estatisticas devem ser coletadas, para gerar um relatério curto ao
final da execugao.

Forma de operacao

O programa, que devera se chamar tp3virtual, deverd ser iniciado com quatro argumentos:
tp3virtual lru arquivo.log 4 128
Esse argumentos representam, pela ordem:

1. o algoritmo de substituigdo a ser usado (1lru, fifo ou random);
2. o arquivo contendo a sequéncia de enderecos de memdria acessados (arquivo.log, nesse exemplo);

3. o tamanho de cada pégina/quadro de memdria, em kilobytes — faixa de valores razodveis: de 2 a
64;

4. o tamanho total da memoria fisica disponivel para o processo, também em kilobytes — faixa de

valores razodveis: de 128 a 16384 (16 MB).

Formato da saida

Ao final da simulacdo, quando a sequéncia de acessos & memoria terminar, o programa deve gerar um
pequeno relatoério, contendo:

e a configuragao utilizada (definida pelos quatro parametros);

e o numero total de acessos & meméria contidos no arquivo;


curso.html

e o ntmero de page faults (paginas lidas);

e o nimero de piginas “sujas” que tiveram que ser escritas de volta no disco (lembrando-se que
pdginas sujas que existam no final da execugdo nio precisam ser escritas).

Um exemplo de saida poderia ser da forma (valores completamente ficticios):
prompt> tp3virtual lru arquivo.log 4 128
Executando o simulador...
Arquivo de entrada: arquivo.log
Tamanho da memoria: 128 KB
Tamanho das paginas: 4 KB
Tecnica de reposicao: 1lru
Paginas lidas: 520
Paginas escritas: 352

Formato do arquivo de entrada

Como mencionado anteriormente, cada linha contém um endereco de memodria acessado, seguido das
letras R ou W, indicando um acesso de leitura ou escrita, respectivamente. Por exemplo, as linhas a
seguir foram retiradas de um dos arquivos utilizados:
0785db58 W
000652d8
0005d£58
000652e0
0785db50
000652e0
31308800

00062368 R
Os arquivos fornecidos representam o registro de todas as operagoes de acesso a memoria observadas

durante a execucgao real de alguns programas considerados significativos de classes de programas reais:

XX = W=D

e compilador.log: execucao de um compilador, que normalmente utiliza um grande nimero de
estruturas de dados internas complexas;

e matriz.log: um programa cientifico que utiliza calculos matriciais relativamente simples, mas sobre
grandes matrizes e vetores;

e compressor.log: um programa de compressao de arquivos, que usa estruturas de dados mais
simples;

e simulador.log: um simulador de particulas, que executa calculos complexos sobre estruturas rel-
ativamente simples.

Todos os arquivos estdo compactados (.zip) e devem ser descompactados antes de serem usados.
A leitura do arquivo pode ser feita com o comando scanf (), como no trecho a seguir:

unsigned addr;
char rw;

fscanf(file,"%x %c",&addr,&rw);

Determinacao da pagina a partir do enderego

Como visto em sala, para se identificar a pagina associada a um enderego, basta descartar os s bits menos
significativos do endereco. Se a pégina fosse fixada em 4 KB, s seria sempre 12. Entretanto, para se
implementar um tamanho de pagina varidvel, s deve ser calculado a cada execucao. Para simplificar,


compilador.zip
matriz.zip
compressor.zip
simulador.zip

vamos assumir que o tamanho da pagina serd sempre fornecido como uma poténcia de 2 (nao é necessério
checar). O c6digo para se determinar s pode ser:
unsigned s, page_size, tmp;

/* Derivar o valor de s: */
tmp = page_size;
s = 0;
while (tmp>1) {
tmp = tmp>>1;
s++;

’

Nesse caso, para um enderecgo addr, a pagina pode ser determinada simplesmente fazendo-se page = addr >> s;

Implementagao da tabela de paginas

Como os enderegos sao de 32 bits nos arquivos fornecidos, para péaginas de 2 KB (as menores que precisam
ser consideradas), podemos ter até 21 bits de identificacdo de pégina, isto é, uma tabela de pagina de
mais de dois milhGes de entradas. Se cada entrada da tabela tiver um inteiro para identificar a pagina
fisica, teremos um vetor de 8 MB. Nao serad muito eficiente, mas para fins do simulador, essa organizacao
é aceitavel. Vocés nao devem se preocupar em montar uma tabela de paginas hierarquica, como seria
realmente implementada na pratica; isso geraria uma complexidade adicional que nao seria muito util.
Vocés podem também implementar uma tabela de péaginas reversa, ou uma tabela por hash, caso se
sintam inspirados.

A estrutura de dados para representar cada quadro fisico deve conter campos para registrar atributos
como pégina referenciada, instante do ltimo acesso, pagina alterada, etc. (os detalhes sdo parte da
implementacao e vao depender da forma como vocés implementarem cada algoritmo).

Implementacao dos algoritmos de reposicao

Os detalhes de outras estruturas de dados que podem vir a ser usadas para os algoritmos sao de livre
escolha dos implementadores. Vocés devem documentar no relatério como cada algoritmo foi implemen-
tado e certificar-se de que o desempenho final do simulador nao seja demasiado lento (preferivelmente na
ordem de segundos, ndo dezenas de minutos).

Vocés podem utilizar um contador que inicie em zero e seja incrementado a cada acesso a memoria,
como a forma de manter o tempo de cada acesso/leitura/escrita, quando necessdrio.

Para a implementagao da politica aleatéria, as fungoes random () e srandom() podem ser usadas para
se controlar o gerador de nimeros aleatdrios. Para se gerar um ntmero entre 0 e n, a expressao (random()
% n) é suficiente. Note-se que enquanto houver paginas vazias na memoria elas devem ser preenchidas;
apenas quando a memoria estiver completamente ocupada uma pagina aleatéria deve ser substituida.

Verificagao do funcionamento do programa

Apesar da versao a ser entregue precisar gerar apenas o relatério final descrito anteriormente, recomenda-
se fortemente que o programa tenha um modo “depuracdo” onde ele escreva uma linha (ou mais) de-
screvendo o que é feito a cada acesso & memoria. Assim, utilizando-se um arquivo de teste reduzido
(e possivelmente escrito especialmente para testar cada caso de operagdo) vocé pode acompanhar a
operacao do programa passo-a-passo. Para isso, é permitido prever um quinto parametro, opcional, que
seja definido quando se deseje que o programa tenha esse comportamento com saida detalhada. A forma
desse parametro é de escolha dos desenvolvedores. Pode ser uma palavra, como debug, pode ser qualquer
coisa (apenas para configurar um quinto argumento), ou pode ser um nimero, que pode ser usado para
especificar um grau de detalhamento (ndmeros maiores geram mensagens de depuracao mais detalhadas,
por exemplo).



O que deve ser entregue

Vocé deve entregar no moodle um arquivo .zip ou .tgz contendo o(s) arquivo(s) contendo o cddigo fonte
do programa (.c e .h), um Makefile e um relatério sobre o seu trabalho. Nao inclua os arquivos de
teste no processo de entrega!

O relatério deve conter:

e Um resumo do projeto: alguns paragrafos que descrevam a estrutura geral do seu cédigo e todas as
estruturas importantes.

e Decisoes de projeto: descreva como vocé lidou com quaisquer ambiguidades na especificacao. Por
exemplo, para este projeto, explicar como seu interpretador lida com linhas que nao tém comandos,
apenas manipulacao de arquivos.

e Uma anélise do desempenho dos algoritmos de substituicao de péaginas para os varios programas
utilizados.

Essa analise de desempenho é uma parte importante do trabalho e serd responsavel por uma fracao
significativa da nota (+/- 40%). Em diversos momentos precisamos comparar algoritmos, determinar o
que esperar em diferentes condigoes. Seu relatério deve avaliar o comportamento dos trés algoritmos de
reposicao de pagina para os quatro programas, em duas situagoes: quando o tamanho da memoria cresce,
com paginas de 4 KB, e quando o tamanho da memoria fica constante, mas o tamanho das paginas varia
de 2 KB a 64 KB (em poténcias de 2).

Finalmente, embora vocé possa desenvolver o seu c6digo em qualquer sistema que quiser, certifique-se
que ele execute corretamente na maquina virtual com o sistema operacional Linux que foi distribuida no
inicio do curso. A avaliacao do seu funcionamento serd feita naquele ambiente.

Consideracoes finais

Este trabalho nao é tao complexo quanto pode parecer a primeira vista. O cédigo neste caso pode vir a
ser mais extenso que o do TP3, mas ainda nao deve ser excessivamente longo. Evite optar por estruturas
de dados excessivamente complexas em uma primeira implementacao. Use a nogao de tipos abstratos de
dados (TADs) para definir cada estrutura de dados que seja necessdria e comece com uma implementagao
simples. Certifique-se de que a légica do programa esteja funcionando. Se, depois disso, o desempenho
com os arquivos de teste fornecidos for muito ruim, sé entao considere o uso de estruturas mais sofisticadas
(elas nao serdo necessariamente necessérias).

1. Dudvidas: usem o moodle (minha.ufmg).

2. Comece a fazer o trabalho logo, pois apesar do programa final ser relativamente pequeno, o tempo
nao é muito e o prazo de entrega ndo vai ficar maior do que ele é hoje (independente de que dia é
hoje).

3. Vao valer pontos clareza, qualidade do cédigo e da documentagao e, obviamente, a execugao correta
da chamada do sistema com programas de teste. A participagdo nos féruns de forma positiva
também serd considerada.

Ultima alteracao: 23 de junho de 2013



