
Sistemas Operacionais

TP3: simulação de um sistema de memória virtual

Trabalho individual ou em dupla.

Data de entrega: verifique o calendário do curso
(Não serão aceitos trabalhos fora do prazo)

Este trabalho tem por objetivo fazer com que os alunos tenham contato com o tipo de código usado
em simuladores e apliquem os conceitos de memória virtual vistos em sala de aula.

O problema

Neste trabalho você deve implementar um simulador de memória virtual. Ao contrário dos trabalhos
anteriores, este programa não se relaciona diretamente com aspectos do sistema operacional, mas dentro
dele você deverá implementar uma réplica das estruturas de um mecanismo de gerência de memória
virtual. De certa forma, este será um trabalho de programação “mais tradicional”.

Prinćıpio geral

Seu programa deverá ser implementado em C (não serão aceitos recursos de C++, como classes da
biblioteca padrão ou de outras fontes).

O simulador receberá como entrada um arquivo que conterá a sequência de endereços de memória
acessados por um programa real (na verdade, apenas um pedacinho da sequência total de acessos de um
programa). Esses endereços estarão escritos como números hexadecimais, seguidos por uma letra R ou
W, para indicar se o acesso foi de leitura ou escrita. Ao iniciar o programa, será definido o tamanho
da memória (em quadros) para aquele programa e qual o algoritmo de substituição de páginas a ser
utilizado. O programa deve, então, processar cada acesso à memória para atualizar os bits de controle
de cada quadro, detectar falhas de páginas (page faults) e simular o processo de carga e substituição de
páginas. Durante todo esse processo, estat́ısticas devem ser coletadas, para gerar um relatório curto ao
final da execução.

Forma de operação

O programa, que deverá se chamar tp3virtual, deverá ser iniciado com quatro argumentos:
tp3virtual lru arquivo.log 4 128

Esse argumentos representam, pela ordem:

1. o algoritmo de substituição a ser usado (lru, fifo ou random);

2. o arquivo contendo a sequência de endereços de memória acessados (arquivo.log, nesse exemplo);

3. o tamanho de cada página/quadro de memória, em kilobytes — faixa de valores razoáveis: de 2 a
64;

4. o tamanho total da memória f́ısica dispońıvel para o processo, também em kilobytes — faixa de
valores razoáveis: de 128 a 16384 (16 MB).

Formato da sáıda

Ao final da simulação, quando a sequência de acessos à memória terminar, o programa deve gerar um
pequeno relatório, contendo:

• a configuração utilizada (definida pelos quatro parâmetros);

• o número total de acessos à memória contidos no arquivo;

1

curso.html


• o número de page faults (páginas lidas);

• o número de páginas “sujas” que tiveram que ser escritas de volta no disco (lembrando-se que
páginas sujas que existam no final da execução não precisam ser escritas).

Um exemplo de sáıda poderia ser da forma (valores completamente fict́ıcios):
prompt> tp3virtual lru arquivo.log 4 128

Executando o simulador...

Arquivo de entrada: arquivo.log

Tamanho da memoria: 128 KB

Tamanho das páginas: 4 KB

Tecnica de reposicao: lru

Paginas lidas: 520

Paginas escritas: 352

Formato do arquivo de entrada

Como mencionado anteriormente, cada linha contém um endereço de memória acessado, seguido das
letras R ou W, indicando um acesso de leitura ou escrita, respectivamente. Por exemplo, as linhas a
seguir foram retiradas de um dos arquivos utilizados:

0785db58 W

000652d8 R

0005df58 W

000652e0 R

0785db50 W

000652e0 R

31308800 R

00062368 R
Os arquivos fornecidos representam o registro de todas as operações de acesso à memória observadas

durante a execução real de alguns programas considerados significativos de classes de programas reais:

• compilador.log: execução de um compilador, que normalmente utiliza um grande número de
estruturas de dados internas complexas;

• matriz.log: um programa cient́ıfico que utiliza cálculos matriciais relativamente simples, mas sobre
grandes matrizes e vetores;

• compressor.log: um programa de compressão de arquivos, que usa estruturas de dados mais
simples;

• simulador.log: um simulador de part́ıculas, que executa cálculos complexos sobre estruturas rel-
ativamente simples.

Todos os arquivos estão compactados (.zip) e devem ser descompactados antes de serem usados.
A leitura do arquivo pode ser feita com o comando scanf(), como no trecho a seguir:

unsigned addr;

char rw;

...

fscanf(file,"%x %c",&addr,&rw);

Determinação da página a partir do endereço

Como visto em sala, para se identificar a página associada a um endereço, basta descartar os s bits menos
significativos do endereço. Se a página fosse fixada em 4 KB, s seria sempre 12. Entretanto, para se
implementar um tamanho de página variável, s deve ser calculado a cada execução. Para simplificar,

2

compilador.zip
matriz.zip
compressor.zip
simulador.zip


vamos assumir que o tamanho da página será sempre fornecido como uma potência de 2 (não é necessário
checar). O código para se determinar s pode ser:

unsigned s, page_size, tmp;

/* Derivar o valor de s: */

tmp = page_size;

s = 0;

while (tmp>1) {

tmp = tmp>>1;

s++;

}
Nesse caso, para um endereço addr, a página pode ser determinada simplesmente fazendo-se page = addr >> s;

Implementação da tabela de páginas

Como os endereços são de 32 bits nos arquivos fornecidos, para páginas de 2 KB (as menores que precisam
ser consideradas), podemos ter até 21 bits de identificação de página, isto é, uma tabela de página de
mais de dois milhões de entradas. Se cada entrada da tabela tiver um inteiro para identificar a página
f́ısica, teremos um vetor de 8 MB. Não será muito eficiente, mas para fins do simulador, essa organização
é aceitável. Vocês não devem se preocupar em montar uma tabela de páginas hierárquica, como seria
realmente implementada na prática; isso geraria uma complexidade adicional que não seria muito útil.
Vocês podem também implementar uma tabela de páginas reversa, ou uma tabela por hash, caso se
sintam inspirados.

A estrutura de dados para representar cada quadro f́ısico deve conter campos para registrar atributos
como página referenciada, instante do último acesso, página alterada, etc. (os detalhes são parte da
implementação e vão depender da forma como vocês implementarem cada algoritmo).

Implementação dos algoritmos de reposição

Os detalhes de outras estruturas de dados que podem vir a ser usadas para os algoritmos são de livre
escolha dos implementadores. Vocês devem documentar no relatório como cada algoritmo foi implemen-
tado e certificar-se de que o desempenho final do simulador não seja demasiado lento (preferivelmente na
ordem de segundos, não dezenas de minutos).

Vocês podem utilizar um contador que inicie em zero e seja incrementado a cada acesso à memória,
como a forma de manter o tempo de cada acesso/leitura/escrita, quando necessário.

Para a implementação da poĺıtica aleatória, as funções random() e srandom() podem ser usadas para
se controlar o gerador de números aleatórios. Para se gerar um número entre 0 e n, a expressão (random()

% n) é suficiente. Note-se que enquanto houver páginas vazias na memória elas devem ser preenchidas;
apenas quando a memória estiver completamente ocupada uma página aleatória deve ser substitúıda.

Verificação do funcionamento do programa

Apesar da versão a ser entregue precisar gerar apenas o relatório final descrito anteriormente, recomenda-
se fortemente que o programa tenha um modo “depuração” onde ele escreva uma linha (ou mais) de-
screvendo o que é feito a cada acesso à memória. Assim, utilizando-se um arquivo de teste reduzido
(e possivelmente escrito especialmente para testar cada caso de operação) você pode acompanhar a
operação do programa passo-a-passo. Para isso, é permitido prever um quinto parâmetro, opcional, que
seja definido quando se deseje que o programa tenha esse comportamento com sáıda detalhada. A forma
desse parâmetro é de escolha dos desenvolvedores. Pode ser uma palavra, como debug, pode ser qualquer
coisa (apenas para configurar um quinto argumento), ou pode ser um número, que pode ser usado para
especificar um grau de detalhamento (números maiores geram mensagens de depuração mais detalhadas,
por exemplo).

3



O que deve ser entregue

Você deve entregar no moodle um arquivo .zip ou .tgz contendo o(s) arquivo(s) contendo o código fonte
do programa (.c e .h), um Makefile e um relatório sobre o seu trabalho. Não inclua os arquivos de
teste no processo de entrega!

O relatório deve conter:

• Um resumo do projeto: alguns parágrafos que descrevam a estrutura geral do seu código e todas as
estruturas importantes.

• Decisões de projeto: descreva como você lidou com quaisquer ambiguidades na especificação. Por
exemplo, para este projeto, explicar como seu interpretador lida com linhas que não têm comandos,
apenas manipulação de arquivos.

• Uma análise do desempenho dos algoritmos de substituição de páginas para os vários programas
utilizados.

Essa análise de desempenho é uma parte importante do trabalho e será responsável por uma fração
significativa da nota (+/- 40%). Em diversos momentos precisamos comparar algoritmos, determinar o
que esperar em diferentes condições. Seu relatório deve avaliar o comportamento dos três algoritmos de
reposição de página para os quatro programas, em duas situações: quando o tamanho da memória cresce,
com páginas de 4 KB, e quando o tamanho da memória fica constante, mas o tamanho das páginas varia
de 2 KB a 64 KB (em potências de 2).

Finalmente, embora você possa desenvolver o seu código em qualquer sistema que quiser, certifique-se
que ele execute corretamente na máquina virtual com o sistema operacional Linux que foi distribúıda no
ińıcio do curso. A avaliação do seu funcionamento será feita naquele ambiente.

Considerações finais

Este trabalho não é tão complexo quanto pode parecer à primeira vista. O código neste caso pode vir a
ser mais extenso que o do TP3, mas ainda não deve ser excessivamente longo. Evite optar por estruturas
de dados excessivamente complexas em uma primeira implementação. Use a noção de tipos abstratos de
dados (TADs) para definir cada estrutura de dados que seja necessária e comece com uma implementação
simples. Certifique-se de que a lógica do programa esteja funcionando. Se, depois disso, o desempenho
com os arquivos de teste fornecidos for muito ruim, só então considere o uso de estruturas mais sofisticadas
(elas não serão necessariamente necessárias).

1. Dúvidas: usem o moodle (minha.ufmg).

2. Comece a fazer o trabalho logo, pois apesar do programa final ser relativamente pequeno, o tempo
não é muito e o prazo de entrega não vai ficar maior do que ele é hoje (independente de que dia é
hoje).

3. Vão valer pontos clareza, qualidade do código e da documentação e, obviamente, a execução correta
da chamada do sistema com programas de teste. A participação nos fóruns de forma positiva
também será considerada.

Última alteração: 23 de junho de 2013

4


