Sumario

* Modelo de sistema considerado
Sistemas Operacionais r Deadlocks
» Métodos para lidar com deadlocks:
° prevencao (prevention)
° impedimento (avoidance)
° detecgao
recuperagao

o

Deadlocks (cap. 8)

Sistemas Operacionais ~Deadlocks

O problema de deadlock Travessia de uma ponte estreita
. D ‘
« Um conjunto de processos bloqueados, cada um , 1m0
de posse de um recurso e esperando por outro, o
ja obtido por algum outro processo no conjunto M
* Exemplos: « Cada parte da ponte é vista como um recurso
° Um sistema com duas unidades de fita » Se um bloqueio ocorre (deadlock) pode ser
* P1 e P2 ja reservaram uma unidade e precisam da outra resolvido com um carro dando ré
° Semaforos A e B, inicializados em 1 ° Carro libera recursos e retrocede

» PO executa wait(A) e é reescalonado; ° Vérios carros podem ter que fazé-lo

* |nanigao é ivel
<% » PO reassume e executa wait(B). (.’: anicao e possive

+ P1 executa wait(B); wait(A);

Sistemas Operacionais -Deadlocks 3 Sistemas Operacionais ~Deadiocks

Modelo do sistema Deadlock: condigdes necessarias
* Recursos tém varios tipos R1, R2, ..., Rm * Exclusao mutua
¢ Ciclos de CPU, espaco de memoria, disp. E/S * Posse durante a espera
+ Cada recurso tem Ri tem Wi instancias + N&o preempgao
* Processos acessam recursos da mesma forma: » Espera circular
° requisita
° utiliza

° libera

Sistemas Operacionals ~Deadlocks 5 Sistemas Operacionais ~Deadlocks

Grafo de alocagao de recursos Grafo de alocagao de recursos

+ Veértices sao divididos em dois tipos: + Um processo: O
° P={P1, P2, ..., Pn}, os processos no sistema
» Tipo de recurso com 4 instancias
° R={R1,R2, ..., Rm}, os recursos do sistema
» Arestas sao também sao de dois tipos: « Pi requisita instancia de Rj H
° solicitagao: aresta direcionada Pi — Rj p

° atribuigdo: aresta direcionada Ri — Pj « Pi detém uma instancia de Rj

(228
R

Fatos basicos Grafo de alocagéo de recursos
+ Se nao ha ciclos no grafo — néo ha deadlock R
+ Se o grafo contém ciclos
° Se recursos so tém uma instancia — deadlock
¢ Se ha mais de uma instancia — possivel deadlock @ (%2/ «\/%3
\
A, c
R4
Grafo de alocagao de recursos Grafo de alocagao de recursos
com deadlock com ciclo, mas sem deadlock
o)
;:;1 \;,2/
.//
'\\“/;3\
(7
RZ
L] \.
R, . o

Formas de lidar com deadlocks

» Garanta que por construgao eles nao acontecem
+ Evite deadlocks antes que eles ocorram

» Detecte quando um deadlock ocorre e recupere
o sistema a um estado aceitavel

+ Ignore o problema e faga de conta que eles
nunca acontecem

° Usado na maioria dos sistemas, inclusive o Linux!

Sistemas Operacionals ~Deadlocks 13

Prevencgao de deadlocks

+ Garanta que pelo menos uma das condigoes
originais para deadlocks nunca ocorra (1)

» Exclusdo mutua

° ndo ha como evitar: necessaria para recursos
nao compartilhaveis

4
<8

DIPARIANENTO DE GENCIADA
COMPUTAGAO Sistemas Operacionals -Deadlocks 15

Prevencgao de deadlocks

» Garanta que pelo menos uma das condigoes
originais para deadlocks nunca ocorra (3)
* Nao preempgao
° Se um processo ndo conseguir alocar um novo
recurso, deve abrir mdo dos que ja detém

» Implicitamente, eles ser&o adicionados a sua lista de
requisi¢oes atual

» O processo s6 podera continuar quando todos os
recursos puderem ser obtidos

P ° Pode levar a inanicédo
g

Sistemas Operacionals ~Deadlocks 17

4
<3

4
<

Prevengao de deadlocks

» Garanta que pelo menos uma das condigbes
originais para deadlocks nunca ocorra
¢ Exclusdo mutua
° Posse durante a espera
° Nao preempgao
° Espera circular

Prevencgao de deadlocks

» Garanta que pelo menos uma das condigdes
originais para deadlocks nunca ocorra (2)
» Posse durante a espera

° Nao permita que processos pegam recursos aos
poucos:
« pedem todos de uma vez ou
« liberam todos os que detém antes de pedir outros

° Pode levar a baixa utilizagdo dos recursos ou
inanicao

Sistemas Operacionais ~Deadlocks.

Prevencgao de deadlocks

» Garanta que pelo menos uma das condigbes
originais para deadlocks nunca ocorra (4)

» Espera circular

¢ Defina uma ordenagéo total para todos os tipos
de recursos disponiveis

° Exija que todo processo requisite recursos
sempre em ordem crescente
* Impede a formagéo de ciclos no grafo

Sistemas Operacionais ~Deadlocks

Sistemas Operacionais ~Deadlocks 14

“Impedimento” de deadlocks

+ Método mais simples e util

» Cada processo declara o maximo de recursos
de que pode vir a necessitar

+ O algoritmo avalia dinamicamente cada
alocacéo de recursos para garantir que ndo se
forme nenhuma espera circular

» Alocacéo de recursos € feita pela disponibilidade
instantédnea e as demandas maximas declaradas
° Técnica adotada, p.ex., em redes ATM

Sistemas Operacionals ~Deadlocks 19

Estado seguro (de seguranga)

+ Uma seq. <P1,P2,...,Pn> é segura se para Pi,

° os recursos que Pi pode requisitar ndo
excedem a soma do que esta disponivel com as
demandas maximas de todos os Pj, j<i

° se recursos nao estiverem disponiveis, Pi pode
esperar pelo término de todos os Pj

¢ quando Pi terminar, ele liberara todos os
recursos, que podem ser usados por Pi+1

4
<8

DIPARIANENTO DE GENCIADA
COMPUTAGAO Sistemas Operacionals -Deadlocks 21

Estado seguro (de segurancga)

+ Exemplo: 12 acionadores de fitas, 3 processos

PO[P1[P2
[Necessidade maxima [10] 4 [9
[Necessidade atual [5[2 |3

° Estado inseguro
» Ha apenas dois acionadores disponiveis
° Isso ndo atende a demanda maxima de PO, nem de P2
* P1 s6 pode pedir mais 2, entdo eventualmente termina

» Restariam 4 acionadores livres, que ndo atendem as
demandas maximas de PO nem de P2

Sistemas Operacionals ~Deadlocks 23

Estado seguro (de segurancga)

» Cada requisigao ¢é avaliada contra a alocagao
corrente e as demandas maximas declaradas

+ O sistema esta em um estado seguro se existe
uma sequéncia de alocagao segura para todos

4
<3

Sistemas Operacionais ~Deadlocks 20

Estado seguro (de segurancga)

» Exemplo: 12 acionadores de fitas, 3 processos

PO P1/P2
Necessidade maxima |10/ 4 | 9
Necessidade atual 5|22

° Estado seguro: <P1,P0,P2>
* Ha 12 — (5+2+2) = 3 acionadores disponiveis
* P1 pode pedir no maximo mais 2
* PO pode pedir no maximo 5 =3 + 2
* P2 pode pedirnomaximo 7 <5+ 3 +2
° O que acontece se P2 requisitar (e receber)
mais um acionador?

Sistemas Operacionais ~Deadlocks. 22

Conceitos basicos

* Se um estado é seguro unsafe
° Nao ha deadlocks deadlock
+ Se um estado ¢ inseguro ﬂ
° Ha possibilidade de
deadlocks

* Impedimento:
° Garantir que o sistema
nunca entre um estado
inseguro

4
<

Sistemas Operacionais ~Deadlocks 24

Algoritmo do
grafo de alocagéo de recursos

+ Valido para recursos unicos (sem réplicas)
 Aresta de requisi¢éo Pi — Rj (tracejada)
° Processo Pi pode vir a requisitar Rj

° Torna-se aresta de solicitagdo quando o pedido
ocorre realmente

° Quando o recurso ¢ liberado aresta volta a ser
de requisicao

» Todos os recursos devem ser requisitados a
priori no sistema

Algoritmo do
grafo de alocagéo de recursos

ssssssssssssssssssssssssss

Algoritmo do banqueiro:
estruturas de dados necessarias

» Sejam n processos e m tipos de recursos:
° Disponivel[m]: no. de instancias disponiveis
° Max[n][m]: demandas maximas de cada processo
¢ Alocagao[n][m]: situagdo corrente
° Necessidade[n][m]: quanto ainda se pode pedir
* Need [i,j] = Max]i,j] — Allocation [i,j]

Algoritmo do
grafo de alocagéo de recursos

» Antes de atender qualquer requisi¢ao:
° Verifica-se se ao atender a req. (inverter a
aresta de requisi¢ao) cria-se um ciclo
° Se o ciclo existe, estado seria inseguro
* Processo é suspenso temporariamente
° Se o ciclo ndo existe, estado é seguro
« Solicitagdo pode ser atendida

Algoritmo do banqueiro

Aplicavel a recursos com multiplas copias
» Cada processo deve indicar requisitos maximos
+ Quem requisita algo pode ter que esperar

* Quem recebe recursos deve devolvé-los em um
tempo finito

Algoritmo do banqueiro:
teste de seguranca

Sejam Trabalho[m] = Disponivel,
Término[n] = { false, ...}
0)Ache um i (processo) tal que
a) Términoli] == false O(m x n?)
b) Necessidade[i] <= Trabalho
1) Trabalho = Trabalho + Alocagaoli]
Término[i] = true
Retorne ao passo 1

VAN

0) Seguro = (Términoli] para todo i)

<5
ooy

Algoritmo do banqueiro:
solicitagao de recursos por Pi

Solicitagao[m] = demandas de Pi.
0) Se Solicitagdo > Necessidade — ERRO
1) Se Solicitagdo > Disponivel — Pi aguarda
2) Caso contrario, aloque os recursos:
a) Disponivel = Disponivel — Solicitagao
b) Alocagaoli] = Alocacéaoli] + Solicitagéo
c) Necessidade[i] = Necessidade[i] — Solicitagao
3) Se estado final & seguro — FIM
(.: 4)Senao, restaura estado anterior e Pi espera

Sistemas Operacionals ~Deadlocks 31

Algoritmo do banqueiro: exemplo

» Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P1 200 322 122

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(3) B(3) C(2)
Seguro: <P1,P3,P4,P2,P0>

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P2 302 902 600

P4 002 433 431

Dispon.: A(7) B(4) C(3)
Seguro: <P1,P3,P4,P2,P0>

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P1 200 322 122

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(3) B(3) C(2)
Seguro: <P1,P3,P4,P2,P0>

Sistemas Operacionais — Deadiocks 32

Algoritmo do banqueiro: exemplo

» Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(5) B(3) C(2)
Seguro: <P1,P3,P4,P2,P0>

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P2 302 902 600

Dispon.: A(7) B(4) C(5)
Seguro: <P1,P3,P4,P2,P0>

Sistemas Operacionais —Deadiocks 36

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)
Aloc. Max Neces.
ABCABCABC

PO 010 753 743

Dispon.: A(10) B(4) C(7)
Seguro: <P1,P3,P4,P2,P0>

Algoritmo do banqueiro: exemplo

» Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P1 302 322 020

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(2) B(3) C(0)
Seguro: <P1,P3,P4,P0,P2>

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P2 302 902 600

P4 002 433 431

Dispon.: A(7) B(4) C(3)
Seguro: <P1,P3,P4,P0,P2>

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P1 200 322 122

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(3) B(3) C(2)
P1 requisita (1 0 2) — aceitar ou ndo?

Algoritmo do banqueiro: exemplo

» Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(5) B(3) C(2)
Seguro: <P1,P3,P4,P0,P2>

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P2 302 902 600

Dispon.: A(7) B(4) C(5)
Seguro: <P1,P3,P4,P0,P2>

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)
Aloc. Max Neces.
ABCABCABC

P2 302 902 600

Dispon.: A(7) B(5) C(5)
Seguro: <P1,P3,P4,P0,P2>

Sistemas Operacionals ~Deadlocks 43

Algoritmo do banqueiro: exemplo

» Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P1 302 322 020

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(2) B(3) C(0)
Nao ha recursos suficientes p/ (3 3 0)

... PO requisita (0 2 0) — aceitar ou ndo?

ssssssssssssssssss ~Deadiocks 45

Detecgao de deadlocks

» Permita ao sistema entrar em deadlock

* Implemente um algoritmo de detecgao
¢ Semelhante aos de impedimento

» Defina um esquema de recuperagao

Algoritmo do banqueiro: exemplo

* Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 010 753 743

P1 302 322 020

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(2) B(3) C(0)
Seguro: <P1,P3,P4,P0,P2>

Algoritmo do banqueiro: exemplo

» Processos PO — P4; recursos A (10), B(5), C(7)

Aloc. Max Neces.
ABCABCABC

PO 030 753 723

P1 302 322 020

P2 302 902 600

P3 211 222 011

P4 002 433 431

Dispon.: A(2) B(1) C(0)
Estado inseguro

ssssssssssssssssssssssssssss

Detecgao de deadlock quando
recursos tém instancias unicas

* Manter um grafo de espera (“espere por”)
¢ derivado do grafo de alocagao
° vértices: apenas processos
° Pi — Pj: Pi solicita recurso detido por Pj

» Deadlock: ciclo no grafo (espera circular)

» Periodicamente executa algoritmo de busca de
ciclos (O(n?))

Montagem do grafo “espere-por”

D D e D

D

Grafo “espere-por” correspondente

Detecgao de deadlock quando
recursos tém multiplas instancias

Sejam Trabalho[m] = Disponivel,
Término[n] = { soma(alocagao[n][])==0}
0)Ache um i (processo) tal que
a) Términoli] == false
b) Solicitagéoli] <= Trabalho
1) Trabalho = Trabalho + Alocagéoli]
Término[i] = true
Retorne ao passo 1
& 0) Deadlock = (Términol[i] = false para algum i)

O(m x n?)

DEPARTANENT

ssssssssssssssssss ~Deadiocks 51

Detecgao de deadlock quando
recursos tém multiplas instancias

* Processos PO — P4; recursos A (7), B(2), C(6)

Aloc. Solic.

ABCABC
PO 010 000
P1 200 202
P2 303 000
P3 211 100
P4 002 002

Dispon.: A(0) B(0) C(0)
Sem deadlock: <P0,P2,P3,P1,P4>
<

DEPARTANENTO DE GINCIADA
COMPUTACAG sislemas Operacionals ~Deadlocks 53

Detecgédo de deadlock quando
recursos tém multiplas instancias

+ Algoritmo semelhante a detecgéo de estado
seguro no algoritmo do banqueiro:

° Disponivel[m]: no. de instancias disponiveis
° Alocagao[n][m]: situagdo corrente
° Solicitagdo[n][m]: quanto cada processo pede

Detecgao de deadlock quando
recursos tém multiplas instancias

* Processos PO — P4; recursos A (7), B(2), C(6)

Aloc. Solic.

ABCABC
PO 010 000
P1 200 202
P2 303 000
P3 211 100
P4 002 002

Dispon.: A(0) B(0) C(0)
Sem deadlock: <P0,P2,P3,P1,P4>

Detecgao de deadlock quando
recursos tém multiplas instancias

* Processos PO — P4; recursos A (7), B(2), C(6)

Aloc. Solic.
ABCABC
P1 200 202
P3 211 100
P4 002 002

Dispon.: A(3) B(1) C(3)
Sem deadlock: <P0,P2,P3,P1,P4>

<

4

J

N
o

Detecgao de deadlock quando
recursos tém multiplas instancias

» Processos PO — P4; recursos A (7), B(2), C(6)

Aloc. Solic.
ABCABC
P1 200 202
P4 002 002

Dispon.: A(5) B(2) C(4)
Sem deadlock: <P0,P2,P3,P1,P4>

Detecgao de deadlock quando
recursos tém multiplas instancias

» Processos PO — P4; recursos A (7), B(2), C(6)

Aloc. Solic.

ABCABC
PO 010 000
P1 200 202
P2 303 000
P3 211 100
P4 002 002

Dispon.: A(0) B(0) C(0)
Agora, suponhamos que P2 solicita C(1)

Detecgao de deadlock quando
recursos tém multiplas instancias

* Processos PO — P4; recursos A (7), B(2), C(6)

Aloc. Solic.

ABCABC
PO 010 000
P1 200 202
P2 303 001
P3 211 100
P4 002 002
Dispon.: A(0) B(0) C(0)

Deadlock!

g
<5

XPARTANENTO DE GIENCIADA
COMPUTACAG sislemas Operacionals ~Deadlocks 59

Detecgédo de deadlock quando
recursos tém multiplas instancias

* Processos PO — P4; recursos A (7), B(2), C(6)
Aloc. Solic.
ABCABC

P4 002 002
Dispon.: A(7) B(2) C(4)
Sem deadlock: <P0,P2,P3,P1,P4>

Detecgao de deadlock quando
recursos tém multiplas instancias

* Processos PO — P4; recursos A (7), B(2), C(6)

Aloc. Solic.

ABCABC
PO 010 000
P1 200 202
P2 303 001
P3 211 100
P4 002 002
Dispon.: A(0) B(0) C(0)

Deadlock!

Detecgao de deadlock quando
recursos tém multiplas instancias

* Processos PO — P4; recursos A (7), B(2), C(6)

Aloc. Solic.

ABCABC
P1 200 202
P2 303 001
P3 211 100
P4 002 002
Dispon.: A(0) B(1) C(0)

Deadlock!

<

A

Aplicagao do algoritmo de detecgao

* Quao frequentes sao os deadlocks?
» Quantos processos sao afetados?

» Detecgéo frequente:

° Pouco tempo de espera

° Pouca chance de “propagacéo” do travamento
» Deteccgéo esporadica

° Menor overhead de detecgao

& ° Pode encontrar muitos ciclos

Sistemas Operacionals ~Deadlocks 61

Recuperagao de deadlocks:
questdes

+ Como escolher o(s) processo(s) vitima(s)?
» Como distribuir os recursos reclamados?
» Como evitar a inani¢gao?

4
<8

DIPARIANENTO DE GENCIADA
COMPUTAGAO Sistemas Operacionals -Deadlocks 63

Recuperagao de deadlocks

+ E preciso quebrar os ciclos no grafo

« Abortar um ou mais processos

Processo termina com erro

Estado do sistema pode ficar inconsistente
» Fazer a preempgao de recursos

o

o

o

4
<

DEPARTAMENTO DE HNCIADA
COMPUTACAS

Processos que sofrem preempgao precisam
“retroceder” (roll-back) para um ponto anterior

Sistemas Operacionais ~Deadlocks

Sistemas Operacionais ~Deadlocks.

