Sistemas Operacionais

Memoria virtual (cap. 10)

Principios gerais

+ Memoria segmentada/paginada ja fizeram a
separacgao entre endereco ldgico e fisico

» Estendendo a funcionalidade da tabela de
paginas, nem todas as paginas precisam estar
na memoria fisica o tempo todo
° Apenas a parte do programa em execugao

» Espaco de enderegos logicos pode ser muito
maior que o fisico

Paginagao sob demanda

page 0

page 1

page 2 L ———
inlnlin
\\ . o
) Oo00
| 000
OO0

<

V/\N

Sumario

 Principios de paginagao sob demanda
» Impacto da paginagéo sob demanda na
criagdo de processos

« Algoritmos de substituicao de paginas
» Alocagéo de quadros
+ Thrashing

&

A

Paginagdo sob demanda

» Trazer as paginas para a memoria fisica
apenas quando necessarias
° Menos E/S
° Menor area de memoria
° Resposta mais rapida
° Mais processos/usuarios
« Bit valido/invalido usado para controlar presenca

Extensao do principio de swap

T————
M

program swap out o] 10 20 3

i 4|§| SI-EI 6[5 7|i|
8[] o[J10[]11[]
} 120 13] 14[] 18]

program
B

w_ swapin 16|:|17[_—r|18[;|19|;|
20[]21[]22[]23[]
,/

main
memory

Paginagao sob demanda

I Y

Oog
1 [A [s]
le] [o] [e]
EEENE
a0

Falha de pagina (page fault)

Paginac¢ao sob demanda:
desempenho — exemplo

* Tempo de acesso a mem.: 100 ns
* Tempo de swap: 25 ms

« TAE=(1—-p)x 100 + p x 25.000.000

+ TAE =100 + 24.999.900 x p ns

P TAE (ns)| TAE/Ta
0,100000] 250090/ 2500,90
0,010000] 25099 250,99
0,001000 2600 26,00
0,000100 350 3,50
0,000010 125 1,25
0,000001 102 1,02

sistemas Operacionais — Meméria Virtual

4

Falha de pagina (page fault)

* Na primeira referéncia a uma pagina: TRAP
+ S.0. consulta tabela de paginagéo virtual
° Referéncia invalida — aborta o processo
° Pag. ausente — localiza a pagina no disco
* Obtém um quadro vazio
« Carrega a pagina no quadro
» Atualiza a tabela de paginas
* Reinicia a instrugdo que gerou a pagina

Paginagao sob demanda:
desempenho

» Taxa de falta de paginas:0< p=< 1.0

+ Tempo de acesso efetivo (TAE)
TAE = (1 — p) X Tacesso_a_mem + p X Tfalha

Traha = (page fault overhead
+ swap page in
+ restart overhead)

Beneficios da meméaria virtual
para a geréncia de processos

* Redugéo do custo de criagdo de processos

° fork() — copy-on-write
» Acesso a arquivos mapeados em memoria

o

mmap() — mem. virtual associa mem. e arquivo

Sistemas Operacionais — Meméria Virtual 12

Copy-on-Write (COW)

» Duplicacdo de pagina alteravel sob demanda
* Processos recebem referéncia a mesma pagina
° Pagina (alteravel) tem permisséo de escrita = 0
» Se algum dos processos tenta escrever
° Page fault — nova pagina/quadro é alocada(o)
¢ A partir dai, cada processo tem sua cépia

Sistemas Operacionis ~ Meméria Vitual 13

Arquivos mapeados em memoria

--- 1
g
1-q--- 3
1 [} |-:- 4
2 - 3 T
1 1ol
3 | [y 6
4 1 R
5 T 3 =t
1 ha
d TTi oy
h oy
1 1 - -} 1 10
processA ! LE 5 ¢ - 1-1]! processB
virtual memory | | 1 | virtual memory
L} 1 [l
L} 1 -
T ol a< 4 H
il i< 2 lefl4--=2
physical memory
(Q: 1]2][3[4]5]6
N o oo disk file
Gicion
COMPUTACAS eemes Overacons e vical 15
Reposicao de paginas
0 H 0 [monitor e——
1| loadm 1 l [—— |
PC
2| 2| o
LM 1] o M
logical memory page table 4| loadm
for user 1 for user 1
5 J
6| A
R e [u]
o A frame, Bit
\ physical
1 B memory u
2| o
3 E
(o‘ logical memory page table
N for user 2 for user 2
=

Sistemas Operacionas - Meméria Vilual 17

Arquivos mapeados em memoéria

* Mem. virtual: mapeamento do enderego ldgico
do processo a uma area em disco
¢ Normalmente, o sentido € mem. — disco

* Com mmap(), pode-se fazer o oposto:
° Conteudo do disco (arquivo) — espago de mem.

» Exige a capacidade de usar outras areas além
do espaco de swap usual

+ Simplifica o acesso a arquivos de dados
k¢ ° Podem ser tratados como vetores na memoria
mhesSPormite que processos. compartilhem arquivos |,

E se ndo houver um quadro vazio?

+ Substituicdo/reposi¢édo de paginas
° Encontre uma pagina que nao esteja em uso
° Libere o quadro (pode exigir escrita no disco)
* Desempenho:
° Pagina retirada pode vir a ser acessada de novo
° Deseja-se um algoritmo que minimize as falhas

Sistemas Operacionais ~ Memdria Virtual 16

Reposicao de paginas

, valid—invalid bit e ——
swap out
change victim
@ to invalid page/ﬂD
@ f| vietim
reset page
table for)
pag swap =[]
desired I
page in
physical
memory
—

Sistemas Operacionais — Meméria Virtual 18

Reposicao de paginas

» Essencial para completar o desacoplamento
entre memoria fisica e l6gica

+ Tabela de paginas inclui bits extras para
auxiliar no processo de escolha de candidatos

° dirty bit: pagina foi modificada em relagéo ao disco

o

access bit: pagina foi acessada “recentemente”

Sistemas Operacionis ~ Meméria Vitual 19

Algoritmos de reposi¢ao de paginas

+ Deseja-se a menor taxa de falhas possivel

+ Avaliagao é feita contra uma sequéncia de
referéncias a memoria que seja caracteristica

¢ Computa-se o num. de falhas para cada algor.
* Nos exemplos a seguir, a sequéncia é sempre
1,2,3,4,1,2,5,1,2,3,4,5.

Anomalia de Belady

number of page faults

number of frames

Sistemas Operacionas - Meméria Vilual 23

Relagéo entre falhas e num. de
quadros disponiveis

number of page faults

| | I | I 1
1 2 3 4 5 6

number of frames

Sistemas Operacionais — Meméria Virtual 20

First-In-First-Out (FIFO) Algorithm

1,2,3,4,1,2,51,2,3,4,5

* 3 quadros: 9 page faults

11114 5
| \ Anomalia de Belady:
2121

L 8 Mais quadros nao
3|3|2 4 deveriam gerar mais
T page faults!

* 4 quadros: 10 page faults

Sistemas Operacionais ~ Memdria Virtual 22

Algoritmo 6timo (presciente)

1

» Substitua a pagina que levara mais tempo para
ser acessada novamente

« Exemplo: 4 quadros

6 page faults

Sistemas Operacionais — Meméria Virtual 24

4
<8

Least Recently Used (LRU)

1,2,3,4,1,2,5,1,2,3,4,5

 Substitui pagina ha mais tempo sem referéncias
* Exemplo: 4 quadros

Sistemas Operacionis ~ Meméria Vitual 25

Least Recently Used (LRU)

* Implementacdo com pilha
° Mantém-se uma pilha de acessos (dupl. encad.)
° A cada acesso, pagina referenciada vai p/ o topo
° Requer mudangas em 6 apontadores

N&o requer busca no momento da substituicao

o

LRU: aproximagées

* Processamento a cada acesso pode ser
excessivamente oneroso

* Aproximagdes reduzem o processamento a
eventos periédicos

« Utiliza bit de referéncia oferecido pela MMU
para cada pagina

Sistemas Operacionas - Meméria Vilual 20

Least Recently Used (LRU)

» Contagem de tempo
¢ Cada pagina tem registro de tempo de acesso

° A cada acesso, relégio & copiado para o registro
da pagina acessada

° Quando se executa o LRU, busca-se a pagina
com registro mais antigo (menor)

Sistemas Operacionais — Meméria Virtual 26

LRU: uso da pilha

reference string

4 7 o 7 1 0 1t 2 1 2 7 1 2

stack after b

‘,: stack before a

Sistemas Operacionais ~ Memdria Virtual 28

LRU: aproximagées

+ Bit de referéncia
° Inicialmente, bit de referéncia = 0
° Bit é alterado pelo hardware a cada acesso
° Substitui-se alguma pagina com bit nulo
* N&o ha nogédo de ordem entre as pag. referenciadas

Sistemas Operacionais — Meméria Virtual 30

LRU: aproximagdes

» Segunda chance
° Usa lista circular (FIFO) e bit de referéncia
° Se pagina a ser substituida (ordem de reldgio)
tem bit de referéncia setado,
« faz bit de referéncia igual a zero,
» deixa a pag. na memodria, atualiza seu tempo de acesso
* substitui a proxima na ordem que nao foi referenciada
° Ao invés de manter “tempo de acesso”, basta
percorrer a lista de forma circular

Sistemas Operacionis ~ Meméria Vitual 31

Algoritmos de contagem

* Opgoes ja propostas ao LRU
» Manter um contador do num. de referéncias
feitas a cada pagina

MFU (most frequently used)

° Quem foi pouco usado ainda deve ser mais usado
LFU (least frequently used)

° Privilegia pags. com muitos acessos

<~’: ° Exige “envelhecimento” (decaimento exponencial)

DIPARANENIO DE

Alocagao fixa

* |gual: todos os processos recebem o mesmo no.
de quadros na memoria fisica

 Proporcional: fungdo do tamanho do processo

5;= size of process p, m=64
s=Ys, 5,=10
m= total number of frames 5,=127
s _10 N
a,;= allocation for p[=§‘><m GI—EXMNS
127
=——X64~59
7137

Sistemas Operacionas - Meméria Vilual 35

Algoritmo de segunda chance

reference pages reference pages
bits. its.
[o] o]
¥ K2
= [= L]
v v
t
o =] [] o
v i
[] =[]
v v
L [el |
o [=[]
v .
[J o [
4 / /
(o: ciroular queue of pages circular queue of pages
e @ ®)

COMPUTACA Sy T 32

Alocagao de quadros para cada
processo

+ Cada processo precisa de um minimo de pags.

* Dois esquemas principais:
° alocacgao fixa
° alocagao por prioridade

<

N
Srmonos sk
o e Opranss - oV 34

Substituigado global x local

* Global:

° Pagina a ser substituida escolhida do total

° Quadros pode ser transferidos entre processos
* Local

¢ Pagina tem que ser do préprio processo que
gerou a falha

° No. de quadros de cada processo ndo muda

Sistemas Operacionais — Meméria Virtual 36

Thrashing (atividade improdutiva)

» Se processos nao tém paginas “suficientes”

° Page faults aumentam

° Utilizagdo de CPU diminui

° 8.0. pensa que é preciso aumentar multiprog.
Outro processo é trazido para a memoria
Demanda por quadros aumenta

o

o

« Thrashing — processos estdo ocupados
, apenas fazendo swap de paginas

Localidade em padrao de acesso

Tt L o8
SETY 0 i i

ution fime ————

Modelo de conjunto de trabalho
(working-set)

page reference table

...2615777751623412344434344413234443444.

‘A—q ‘A—q
f t
WS(t,) = {1,2,5,6,7) WS(t,) = (3.4)

Localidade de referéncia e
Thrashing

» Por que mem. virtual funciona? — localidade

¢ Processo migram entre areas de acesso

° Areas podem se sobrepor ao longo do tempo

» Por que thrashing ocorre?
> localidades > memodria total

thrashing

<€ /\

degree of muliprogramming

CPU

Modelo de conjunto ativo
(working-set)

. janela ativa (working-set window)

um num. de referéncias a paginas (instr.)
« WSSi (working set do processo Pi) = total de

paginas referenciadas na mais recente
(varia com o tempo)

° Se muito pequeno: ndo cobre a localidade
° Se muito grande: cobre varias localidades

° Se

cobre todo o programa

sssssssssssssssssssssssssssssss

Modelo de conjunto de trabalho
(working-set)

-« D= WSSi demanda total por quadros
« D>m Thrashing
° Nesse caso, suspende um dos processos

Sistemas Operacionais — Meméria Virtual

Identificagdo do working set

» Aproximado com temporizador e bit de referéncia
« Exemplo: = 10.000 unid. tempo
° Temporizagéo acionada a cada 5.000 unid. tempo
° Mantém dois bits por pagina
¢ A cada temporizagéo, copia e zera bits de ref.
° Se um dos bits == pag. no working set
* Melhoria: 10 bits e interrupgdo a cada 1.000 unid.

Outras consideragdes

+ Pré-paginagao (prefetching)

» Determinagédo do tamanho da pagina
¢ fragmentacao interna (pags. menores)
° tamanho das tabelas de pagina (pags. maiores)
° custo de E/S (seek x transferéncia)

° localidade (pags. pequenas melhoram a
resolugdo, mas geram mais faltas)

Impacto do padréo de acesso

int A[][] = new int[1024][1024];
/l'linha = uma pag.; memoria < 1024 quadros
for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)
Alij] = 0;
1024 page faults

for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)
Ali.j] = 0;

1024 x 1024 page faults

sistemas Operacionais — Meméria Virtual a7

Frequéncia de falhas de pagina

» Opcao ao algoritmo de working set

+ Determina-se taxa de falhas “aceitavel”
° Se taxa real é baixa, processo perde quadros
° Se taxa real é alta, processo ganha quadros

increase number
of frames

upper bound

page-fault rate

4 fower bound
& 3 decrease number
of frames

COMPUTACA 44

number of frames
-

Outras consideragdes

» Alcance do TLB: memodria acessivel por ele
° TLB Reach = (TLB Size) X (Page Size)

* |dealmente, working set deve caber na TLB
° Caso contrario, aumentam as falhas

Outras consideragdes

* Inter-relagédo com E/S
° Paginas precisam ser

“presas” na memoria | El
fisica p/ permitir DMA outler ==
magnetic-tape

drive

Sistemas Operacionais — Meméria Virtual 48

