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What is a Trendsetter?
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What is a Trendsetter?

Trendsetters are people:

» Adopt and spread new trends before these trends become
popular.

» Propagate these trends over the network.

threshold for adoption
of new ideas

node indegree

follower hubs high —



Finding trendsetters in a graph



Who are the trendsetters?
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Key Point
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How to find Trendsetters?



Weight edges and run PageRank



Topics and Influence Model
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» Topic: collection of trends (Urls, memes, #hashtags, quotes, etc)
» We denote this set by a vector: {hy, ..., hp}.

» For each node we store the timestamp when she adopt a trend
hy
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Weight Edges

[ 1, if(v) >0,
s1(v)i = { 0, otherwise (1)

SQ(U7 V),' =

e «, ifti(v)>O0andt(v) < ti(u),
0, otherwise

fori=1,..., ng, where A = tj(u) — ti(v) and o > 0.
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Weight Edges

si1(v) =[1,0,1] so(u,v) = [e~ "+ ,0,0]

» Next,

B, v) = ( s1(v) - s2(u, v) ) " (L(sg(u, v))>’ 3)

1 (V)] > [[s2(u; V)] N
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TS Ranking

The trendsetters (TS) rank of node v in a network Gk (N, Ek),
denoted by TSk(v), is given by:

TSk(v)=d Dk(v)+(1—d) > TS(w)l(w,v), (4)

welng, (v)



Evaluation
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Baseline

» In-degree ranking
» PageRank
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Twitter until August 2009.

Over 50 Millions users with all their followers and followees.
1.6 Billions tweets
We use #tags as trends.

v v . vy
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Example:
Iran Elections on Twitter
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» Iran Elections: {#iran, #iranelections,#tehran}
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» TS : @Lara (“Reporting from the Middle East”)
» PR : @cnnbr (“CNN Breaking News”)

3

[} UFIG  yangol



Baseline

» We use the #tag classification made by Romero et al.

| Category | #Topics | Example of Hashtags | #Tweets |
Celebrity 16 | #michaeljackson, #niley 1,036,101
Games 13 | #mafiawars, #ps3 # 2,556,437
Idioms 35 | #musicmonday,#followfriday | 7,882,209
Movies 29 | #heroes,itv 1,769,945
Music 33 | #lastfm, #musicmonday 2,785,522
None 153 | #quotes, #sale 2,227,971
Political 39 | #honduras, #lranelection, 8,156,786
Sports 27 | #soccer, #rugby 1,914,061
Technology 41 | #twitter,#android 7,459,471
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Trendsetters: early adopters?
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Experiments |
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In-degree vs adoption time
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Experiments Il
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Influenced Followers Ratio
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Influenced Followers Ratio

IFk(v) is the fraction of followers of v that adopted at least one trend
of the topic k after v.

Category (%)ID  (%)PR  (%)TS
POLITICAL 0.013 0.084 0.174
CELEBRITY 0.015 0.089 0.148
MUSIC 0.013 0.096 0.160
GAMES 0.022 0.058 0.115
SPORTS 0.004 0.054 0.098
IDIOMS 0.001 0.034 0.088
NONE 0.011 0.001  0.085
TECHNOLOGY 0.006 0.054 0.078
MOVIES 0.006 0.043 0.067
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Ranking with Partial Information

——t— musicmonday TS
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Final Remarks

» Usually, follower hubs (celebrities) are late adopters.
» Trendsetters have lower in-degree, but they spread new ideas.
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» Code available (diego.saez [at] upf.edu)
» Implementation in python + C
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KSC

We also group the topics by shape, using the KSC algorithm.
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