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User Generated Videos
• Video is a trend on the Web

– YouTube, Yahoo! videos, etc.
– New features: video review, video blog, video advertises
– 77% of the U.S. Internet audience viewed online 

videos 

• Explosion of user generated content
– YouTube has 10 hours of videos uploaded every minute

Users are not only viewing a lot of videos, Users are not only viewing a lot of videos, Users are not only viewing a lot of videos, Users are not only viewing a lot of videos, 
but they are also creating a lot of videosbut they are also creating a lot of videosbut they are also creating a lot of videosbut they are also creating a lot of videos
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New problems and challenges
• Content retrieval

– Bad assignment of 
metadata

– Duplicates 

• System design and 
infrastructure

• Advertisements 
– The contextual 

analysis is hard to do

• Opportunistic user 
actions
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This Talk
Detect Detect Detect Detect opportunistic actionsopportunistic actionsopportunistic actionsopportunistic actions in the YouTube in the YouTube in the YouTube in the YouTube video responsevideo responsevideo responsevideo response featurefeaturefeaturefeature

Users intentionally post unrelated Users intentionally post unrelated Users intentionally post unrelated Users intentionally post unrelated 
videos to the video topicvideos to the video topicvideos to the video topicvideos to the video topic
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Example of unrelated videos
Video responseVideo

• Advertising of Lynda.com, teaching to program on Javascript as 
a video response to a very popular video of Miss in troubles to 
answer a question
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Example of unrelated video
Video Response Video

• Advertisement of a proxy service as video response to a soccer 
game video: Liverpool x Arsenal
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Example of unrelated videos
Video responseVideo

• Video pornography posted as video response to a cartoon
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Video Spam
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Video Promotion
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Negative Impact of Promotion and Spam

• Challenges for users in identifying video promotion and spam
• consumes system resources, especially bandwidth
• compromise user patience and satisfaction with the system

• Pollution in top lists

• Difficulty in ranking and recommendation
• Promoted or spam videos may be temporarily ranked high or considered 

related to the video topic
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Goal

• Detect video spammers and promotersDetect video spammers and promotersDetect video spammers and promotersDetect video spammers and promoters

• 4-step approach
1. Sample YouTube video responses and users

2. Manually create a user test collection 
(promoters, spammers, and legitimate users)

3. Identify attributes that can distinguish spammers and promoters from 
legitimate users

4. Classification approach to detect spammers and promoters
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Step1. Sampling video responses

Video response user graphVideo response user graphVideo response user graphVideo response user graph

– How people crawl social networks?
– Pick known users
– Crawl friends
– Crawl new users found recursively
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Step1. Sampling video responses

• Crawls subject to rate-limiting
– Use of a master-slave crawler with 10 client machines

• Effective performed a BFS of our graph
– Seeds: list of top-100 most responded videos of all time
– Follows links in both directions
– Collect entire weakly connected components (WCCs)

• Collected 701,950701,950701,950701,950 video responses and 381,616381,616381,616381,616 video topics, 
264,460264,460264,460264,460 users in 7 days in January, 2008
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Step2. Create Test Collection

Desired PropertiesDesired PropertiesDesired PropertiesDesired Properties

1) Have a significant number of users in each class

2) Include spammers and promoters which are aggressive in 
their strategies

3) Include a large number of legitimate users with different 
behavioral profiles 
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Step2. Create Test Collection

• Users selected according to three strategiesUsers selected according to three strategiesUsers selected according to three strategiesUsers selected according to three strategies

1) Manually identified 150 suspect in the top 100 most responded lists
2) Randomly select 300 users from those who posted video responses to 
videos in the top 100 most responded lists
3) Collected 400 users across 4 different levels of interaction

- sent and received video responses

• Volunteers analyze users and videosVolunteers analyze users and videosVolunteers analyze users and videosVolunteers analyze users and videos
- Conservative approach -> favor legitimate
- Agreement in 97% of the analyzed videos

In total 829 users: 641 legitimate, 157 spammers, 31 promoters In total 829 users: 641 legitimate, 157 spammers, 31 promoters In total 829 users: 641 legitimate, 157 spammers, 31 promoters In total 829 users: 641 legitimate, 157 spammers, 31 promoters 
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Step3. Attributes

• UserUserUserUser----Based:Based:Based:Based:
– number of friends, subscriptions, subscribers, favorites, videos watched, 

etc

• VideoVideoVideoVideo----BasedBasedBasedBased: 
– duration, numbers of views received, comments, ratings, favorite

marked, honors, external links, etc
– 3 sets of videos: video topics, video responses, and all the videos 

• Social Network:Social Network:Social Network:Social Network:
– clustering coefficient, betweenness, reciprocity, assortativity, 
UserRank (pagerank), etc
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Distinguishing classes of users (1)

Promoters usually post several videos 
in a short period of time
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Distinguishing classes of users (2)

Promoters target 

unpopular content

Spammers target 

popular content
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Distinguishing classes of users (3)

Even low-ranked features have potential 
to separate classes apart

Social network metrics have potential 
to separate classes apart
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Step3. Attributes

Feature Selection: Feature Selection: Feature Selection: Feature Selection: χχχχ2222 rankingrankingrankingranking

Even low-ranked features have potential 
to separate classes apart
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Step4. Classification Approach

• SVM (Support vector machine) as classifier
– Use all attributes
– Two classification approaches

Promoters Spammers Legitimates

Promoters

Spammers Legitimates

Non-promoters

Light Heavy

FlatFlatFlatFlat

Hierarchical
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Flat Classification
• Correctly identify majority of promoters, 

misclassifying few legitimate users.

• Detect a significant fraction of spammers 
but they are harder to distinguish from 
legitimate users

- Dual behavior of some spammers

• Micro F1 = 88% (predict the correct class 88% of cases)

Promoters Spammers Legitimates
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Hierarchical Classification

• GoalGoalGoalGoal: provide flexibility in 
classification accuracy 

• First Level:First Level:First Level:First Level:
– Most promoters are correctly classified
– Statistically indistinguishable compared 

with flat strategy

Promoters

Spammers Legitimates

Non-promoters

Light Heavy
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Distinguishing Spammers from 
Legitimate users

• J = 0.1: correctly classify 24% 
spammers, misclassifying <1% 
legitimate users

• J = 3: correctly classify 71% 
spammers, paying the cost of 
misclassifying 9% legitimate 
users
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Distinguishing Promoters
• Heavy promotersHeavy promotersHeavy promotersHeavy promoters could reach the top-100 in one day
• Light promotersLight promotersLight promotersLight promoters associated with a collusion attack

• J = 0.1J = 0.1J = 0.1J = 0.1: correctly classify 36% of heavy 
promoters at the cost of misclassifying 
10% of light promoters

• J = 1.2: J = 1.2: J = 1.2: J = 1.2: correctly classify 76% of heavy 
promoters at the cost of misclassifying 
17% light ones
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Reducing the Attribute Set 
Scenario 1Scenario 1Scenario 1Scenario 1 Scenario 2Scenario 2Scenario 2Scenario 2

Classification approach is 
effective even with a smaller, 
less expensive set of attributes

Different subsets of features 
can obtain competitive results
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Conclusions

• First approach to detect spammers and promotersFirst approach to detect spammers and promotersFirst approach to detect spammers and promotersFirst approach to detect spammers and promoters

– Attribute identification

– Creation of a test collection 
• Publicly available atPublicly available atPublicly available atPublicly available at www.dcc.ufmg.brwww.dcc.ufmg.brwww.dcc.ufmg.brwww.dcc.ufmg.br/~fabricio/~fabricio/~fabricio/~fabricio

– Classification approach
• Correctly identify majority of promoters
• Spammers showed to be much harder to distinguish

- trade-off between detect more spammers at the cost of
misclassifying more legitimate users
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Discussion and Future Directions

• Other approaches that could be combined with ours
– User Filtering
– IP-Blocking, SMS account authentication
– User reputation

• Future work:
– Compare different classifiers and possibly combine them
– Label users is expensive and time consuming

• Evaluate semi-supervised classification methods
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Questions?

fabricio@dcc.ufmg.br
http://http://http://http://www.dcc.ufmg.brwww.dcc.ufmg.brwww.dcc.ufmg.brwww.dcc.ufmg.br/~fabricio/~fabricio/~fabricio/~fabricio


