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User Generated Videos

e Video is a trend on the Web

— YouTube, Yahoo! videos, etc.
— New features: video review, video blog, video advertises
— 77% of the U.S. Internet audience viewed online

videos

e Explosion of user generated content
— YouTube has 10 hours of videos uploaded every minute

Users are not only viewing a lot of videos,
but they are also creating a lot of videos



New problems and challenges
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This Talk

Detect opportunistic actions in the YouTube video response feature
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Example of unrelated videos

Video Video response
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« Advertising of Lynda.com, teaching to program on Javascript as
a video response to a very popular video of Miss in troubles to
answer a question 5



Example of unrelated video

Video Video Response

Liverpool 4 - 2 Arsenal Uefa Champions League

Free Web Proxy - Air-Proxy.com
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« Advertisement of a proxy service as video response to a soccer
game video: Liverpool x Arsenal 6



Example of unrelated videos

Video Video response

Flintstones - Happy Anniversary Sexy Teen Dance

* Video pornography posted as video response to a cartoon



Video Spam
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Video Promotion
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Negative Impact of Promotion and Spam

e Challenges for users in identifying video promotion and spam
e consumes system resources, especially bandwidth
e compromise user patience and satisfaction with the system

* Pollution in top lists

« Difficulty in ranking and recommendation

* Promoted or spam videos may be temporarily ranked high or considered
related to the video topic
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Goal

Detect video spammers and promoters

4-step approach

1. Sample YouTube video responses and users

2. Manually create a user test collection
(promoters, spammers, and legitimate users)

3. ldentify attributes that can distinguish spammers and promoters from
legitimate users

4. Classification approach to detect spammers and promoters
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Part2.
4-step
approach




Step1. Sampling video responses

— How people crawl social networks?
— Pick known users
— Crawl friends
— Crawl new users found recursively

Video response user graph

Video Topic

Video Response 1 Video Response 2

L - "
T User B User C
Video Iopic Video Response 1 Video Response 2
W — |
.
User B
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Step1. Sampling video responses

« Crawls subject to rate-limiting
— Use of a master-slave crawler with 10 client machines

« Effective performed a BFS of our graph
— Seeds: list of top-100 most responded videos of all time
— Follows links in both directions
— Collect entire weakly connected components (WCCs)

« Collected 701,950 video responses and 381,616 video topics,
264,460 users in 7 days in January, 2008
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Step2. Create Test Collection

Desired Properties

1) Have a significant number of users in each class

2) Include spammers and promoters which are aggressive in
their strategies

3) Include a large number of legitimate users with different
behavioral profiles

15



Step2. Create Test Collection

e Users selected according to three strategies

1) Manually identified 150 suspect in the top 100 most responded lists

2) Randomly select 300 users from those who posted video responses to
videos in the top 100 most responded lists

3) Collected 400 users across 4 different levels of interaction
- sent and received video responses

e Volunteers analyze users and videos
- Conservative approach -> favor legitimate
- Agreement in 97% of the analyzed videos

In total 829 users: 641 legitimate, 157 spammers, 31 promoters
16



Step3. Attributes

User-Based:

— number of friends, subscriptions, subscribers, favorites, videos watched,
etc

 Video-Based:

— duration, numbers of views received, comments, ratings, favorite
marked, honors, external links, etc

— 3 sets of videos: video topics, video responses, and all the videos

Social Network:
— clustering coefficient, betweenness, reciprocity, assortativity,
UserRank (pagerank), etc
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Distinguishing classes of users (1)
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Distinguishing classes of users (2)

1 T ' T ' T ' .'”_,'.4.---"*
Promoter -« I
08 - Spammer —*—;
T

Promoters target
unpopular content

Cumulative %

I mrget
— — popular content
10 10

10° 10" 107
Total Ratings of Target Videos



Distinguishing classes of users (3)
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Step3. Attributes

Feature Selection: X2 ranking

Attribute Set | Top 10 | Top 20 | Top 30 | Top 40 | Top 50
Video ©) 18 25 30 36
User | 2 g 7 9

SN 0 0 (1) 3 g

N4

Even low-ranked features have potential

to separate classes apart




Step4. Classification Approach

e SVM (Support vector machine) as classifier
— Use all attributes
— Two classification approaches

Hierarchical

Flat

Non-promoters

Promoters

Legitimates

Legitimates
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Part3.
Experimental
results
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Promoters

Flat Classification

Legitimates

e Correctly identify majority of promoters,
misclassifying few legitimate users.

e Detect a significant fraction of spammers
but they are harder to distinguish from
legitimate users

- Dual behavior of some spammers

Predicted
Promoter | Spammer | Legitimate
Promoter 96.13% 3.87% 0.00%
True Spammer 1.40% 56.69% 11.91%
Legitimate 0.31% 5.02'% 94.66%

Micro F1 = 88% (predict the correct class 88% of cases)
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Hierarchical Classification

Promoters

Non-promoters

Legitimates

e Goal: provide flexibility in

classification accuracy

First Level:

— Most promoters are correctly classified

— Statistically indistinguishable compared
with flat strategy

Predicted

Promoter

Non-Promoter

True

Promoter
Non-Promoter

92.26%

0.5H%

7.74%

99.45%
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Distinguishing Spammers from
Legitimate users

Predicted
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True Spammer 41.27% 58.73%
100 Corre'ctly CIéssifiedISpamrhers ¥
Misclassified Legitimate .
80y 1 * J =0.1: correctly classity 24%
%g 60 | spammers, misclassifying <1%
g legitimate users
g 40 ,;f«* .
@ ,
20 [+ 1 * J = 3: correctly classify 71%
o Lessegeeeseenereneesesesstttl gspammers, paying the cost of
o o5 1 15 2 25 3 misclassifying 9% legitimate
SVM: J Parameter users

26



Percentage (%)

Distinguishing Promoters

Heavy promoters could reach the top-100 in one day
Light promoters associated with a collusion attack
Predicted
Light Promoter | Heavy Promoter @ @
Light Promoter 83.33% [6.67%
True Heavy Promoter 27.12% 72.88%
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SVM: J Parameter

J = 0.1: correctly classify 36% of heavy
promoters at the cost of misclassifying
10% of light promoters

J = 1.2: correctly classify 76% of heavy
promoters at the cost of misclassifying
17% light ones
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Metric

Reducing the Attribute Set
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Conclusions

e First approach to detect spammers and promoters

— Attribute identification

— Creation of a test collection
e Publicly available at www.dcc.ufmg.br/~fabricio

— Classification approach
e Correctly identify majority of promoters

e Spammers showed to be much harder to distinguish
- trade-off between detect more spammers at the cost of
misclassifying more legitimate users
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Discussion and Future Directions

* Other approaches that could be combined with ours
— User Filtering
— |P-Blocking, SMS account authentication
— User reputation

 Future work:

— Compare different classifiers and possibly combine them

— Label users is expensive and time consuming
« Evaluate semi-supervised classification methods
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Questions?

fabricio@dcc.ufmg.br
http://www.dcc.ufmg.br/~fabricio

32



