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Abstract. AnISP(InternetServiceProvider) configuesa multi-level cachesys-
temin order to reducethe amountof bandwidthneededo serveits clientsand
to improve user's accessperformance We evaluatea cache systemmanaje-
mentpolicy within an ISP, which we call "cache-layering”, usinga new frame-
work anda metricfor the characterizationof Webtraffic and systendesign:the
ADF(Aggregation, Disaggregation and Filtering) frameavork and Entropy. Us-
ing Entropy, the ADF framevork and simulationswith actual proxy traces,we
wete ableto find thatthe useof "cache-layering” canimprovesystens efficacy
andreducecostswithin an ISP

1. Intr oduction

Growth, increasingdemandand ascendinghumberof usersaretermsthat have
becomefrequentin the literatureto describethe Web phenomenonlin fact, the number
of usersaswell astheloadthatthey imposeon the network, have increasedapidly over
the last few years. In this context, Web proxieshave gainedwidespreadoopularity as
it functionasintermediariebetweenWeb clients(bravsers)andWeb seners,aimingon
reducingtheamountof databeingtransmittedbver the Internetand,thereforejncreasing
theWeb performancexperiencedy aclient.

A proxy sener canbe understoodisan aggreatoranda disaggreatorof traffic.
Suchsenersareusuallyusedto delimit a portion of network, in which nodeshave the
samegeographidocation. For instancejt is often placedasa point of communication
betweeralocal areanetwork(LAN) andthe Internet.In this configuration every request
originatedby a client belongingto the LAN, andevery responsdrom the Web, passes
throughthe proxy sener. Whena file requestis madeby a client within the LAN, not
only doesit forward the requestto the destinationWeb sener, but it alsorecevesthe
incomingresponsen the oppositedirection. In additionto forwardingthe recevedfile
to the destinatiorclient, it storesa copy in its local cache.This copy providesthe ability
to satisfyfuture clientsrequestgo the samefile without the necessityof contactingthe
end-serer again. Sinceevery client requestpasseghroughthe proxy sener, we say
thatit aggreatesthe sequencesf requestsalsoknown asstreamsof requestsinto one
singlestreamthatwill be processedby the cacheapplication.In othersensewe canalso



considerthe proxy sener asa traffic disaggrgator sinceit distributesthe requestsrom
its local clientsto several TCP pipes’ thatgo to differentdestination®verthe Internet.

As the proxy sener aggregatesanddisaggregatestraffic, it playsits mostimpor-
tantrole — afilter. Whenthe streamf requestgor Web objects,originatedby clients,
passthrougha proxy sener, only the requestghat causeda missin the proxy cache
areforwardedin the directionof the destinationWeb sener. On the otherhand,the hit
requestsare sened by the proxy sener that, transparentlyoriginatesa responsdo the
client.

Aggregation,disaggregationandfiltering arethethreephenomen#hatstreamsof
requestaresubjectedo asthey passthroughproxiesseners.

The Web cachingsystemconsistsof a multi-level proxy cache.In this configu-
ration the cachelocatedin the end-usemachine(Web browser cache)is in the lowest
level of the hierarchy Onelevel above, therearethe intranetcacheswhich consistof
proxiesof universitiesandorganizationsAs we ascendn the hierarchyregional proxies
appeamlandsoon. A requesthatcannotbe satisfiedoy oneproxy caches sentto aparent
proxy until it canbe satisfiedor, asthe last option, the destinationsener be contacted.
The designof an effective proxy hierarchy regardingto the regionallocationof its com-
ponentsthe size of eachcacheandthe configurationof the levels involvesthe study of
how the propertiesof the streamshangeasthey arebeingalteredby the proxiesseners.
However, the Internetis a collectionof independensystemgqor networks) composedy
independentomponentsind,thereforejts configurationis not over one’s control.

An ISP (InternetServiceProvider) configuresa multi-level cachesystemin order
to reducethe amountof bandwidthneededo sene its clientsandimprove users access
performanceThecomponentsf thiscachesystemareusuallyconnectedby a high-speed
network (i.e. 100Mbps LAN) andthe ISP administratohasthe entire control over the
configuratiorof the hierarchyandits componentsThis meanghatonecanchangeall the
structureandconfigurationof this systemto improve efficacgy.

This flexibility motivatedus to evaluatea cachesystemstructurewithin an ISP,
which we call "cache-layering”. To do this, we madeuse of a newv framework and
metric for the characterizatiorof Web traffic and systemdesign. For instance we use
the ADF(Aggregation, DisaggrgationandFiltering) framewvork andthe Entropy metric
[Fonsecaetal.,2003. ADF is usedto representhe transformationghat occurin the
stream9f requestasthey passthroughthe InternetTopology while Entropy is a metric
proposedo characterizéhe popularityprofile in a sequencef requests.

Previous works made use of hit ratio and curwve fitting of the popularity dis-
tribution to evaluate Web cache systems. As this approach presentslimitations
[Fonsecaetal., 2003, we shav how the new metricscanbe usedto accomplishithetask.
Using Entropy combinedwith ADF and simulationswith actualproxy traces,we were
ableto find thatthe useof "cache-layering’canimprove accesgerformanceandreduce
costswithin anISP



2. RelatedWork

Therehasbeenconsiderablevork donein the study Web requeststreams. In
particular mary studieshave looked at the locality properties[Almeidaetal., 1996
JinandBestaros, 2000] of suchstreams.Locality is the propertyfoundin a streamthat
stateghatreferencedo a setof objectstendto be closein time to referenceso another
setof objects. Thesestudiesweremotivatedby theimpactof locality on the designand
performancef cachingandprefetchingsystems.

As examples of the application of these studies in systemsengineering,
they have informed the development of cache replacementpolicies [Wang,1999
CaoandlIrani, 1997, inter-cachecoordinationprotocols[Fanetal.,200Q andprefetch-
ing algorithmg[Bestavros,1999.

The first ideason how to characterizehe effects of proxiesin a streamof re-
guestswere first introducedby [Weikle etal.,1998]. This work introducesthe view
of cachesas filters, and comparespropertiesof incoming and outgoing streamsof
references,in the context of program memory references. In the context of Web
caching,Mahanti, Williamson and Eager[Mahantietal., 2009 study how temporallo-
cality changesat differentlevels in the cachinghierarchy They shav thatthe concen-
tration of referencesendsto diminish, andthe tail of the Zipf’s distribution increases,
as one goesup the cachinghierarchy This effect is also noted and characterizedn
[Williamson, 2002 Doyle etal., 2001].

While [Williamson,2002] doesnot considertransformation®therthanfiltering,
[Fonsecaetal., 2003 introducedthe studyof two othertransformationghat streamsare
subjectto: AggregationandDisaggreation. They have alsoorganizedhesetransforma-
tionsin aframework, proposedandvalidatedmetricsfor the analysisof temporallocality
asthe streamsnove throughthis framework.

[Williamson, 2002 proposes cachemanagemenpolicy, in which thefirst level
of thecachehierarchyis allowedto cacheonly documentdelown a certainthresholdS of
file size,andthe upperlevel is allowedto cacheonly documentghatsizeis greaterthan
S. They concludethatthis schemecalleda file-size-basegartitioning,canimprove the
overall performanceof the system.We evaluatea similar idea,however we restrictonly
thefirst level from cachingimagefiles, allowing the secondevel to cachingall objects.
We call this schemécachelayering”. Insteadof aimingon evaluatereplacemenpolicies,
asin [Williamson,2002], we areinterestedn exploiting andevaluatingfile-type-based-
layering, usingthetoolsproposedy [Fonsecaetal., 2003.

3. ISP Cost-Optimal Problem

An ISP (InternetServiceProvider) is a compaly that provides a backboneac-
cessfor clientswithin a regional location. In additionto servingindividuals, ISPsalso
senelarge companiesproviding adirectconnectiorfrom the compary’s networksto the
Internet.

ThereforethelSPcontractanamountof bandwidthfrom oneor morebackbones.
Fromthe ISP pointof view, it is interestingo maximizethe numberof clients.However,
the growth of numberof userscannotdecreasethe quality of serviceexperiencedy the



clients.In otherwords,it hasto presere the SLA (ServiceLevel Agreementestablished
with eachclient. This meansthatit hasto improve systemscapacity as more clients

imposemoreloadontothesystem.Ontheotherhand,it is alsointerestingo reducecosts
with bandwidthpurchase$érom the backbonesNonethelessalsopreservinghe SLA.

It is worthy notingthatnotall client’'srequestsnust,necessarilypasshroughthe
backbondink. Oncea documentvasfirstly requestedby anISPclient, it canbestoredin
thelocal ISP cachesystemand,thus,futurerequestso thesamefile canbesenedlocally.
As aresult,for the sale of costreductionandimprovementof users accesperformance,
the ISP configuresa multi-level cachesystem. An illustration of an ISP scheme just
describedcanbeseenin Figurel.
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Figure 1: ISP Scheme: a set of Web clients connect to an ISP to request docu-
ments, from its local cache, which forwards miss requests to the Inter-
net using the backbone link.

ThelSP cachesystemcanreducetheamountof bandwidthneededrom the back-
boneandreduceghesystems responsdéime to sene usersrequestsThecomponentsf
this cachesystem(i.e. cachemachines)re usuallyconnectedy a high-speedetwork
(i.e. 100Mbps LAN) andthe ISP administratohasthe entire control over the configu-
ration of the hierarchyandits components.Although a cachesystemcanimprove ISP
capacityandreducecosts thereis anoptimalcachesystensizethatbringscostsof infra-
structureandbandwidthpurchaseo minimumandthesystencapacityto theperformance
level agreedwith clients. Hipotetically, goingto extremes,ncreasingcachesystemsize
to infinity doesnot dischagethe purchasef somebandwidth.Corversely cachesystem
of sizezeromeanghatall theclient'srequestsnustpasshroughlSP backbondink. The
ISP Cost-Optimabproblemconsistof finding theoptimalsizeof thecachesystemwhich
would reducetheinfra-structureandbackbonecostsandmaximizethe ISP capacity

Cachehierarchieshave proven to be a fundamentalelementfor scalability of
cachingsystemgWilliamson,2003. Insteadof tackling the ISP cost-optimalproblem,
we aim on improving cachesystemefficacy, improving the hierarchyschemeandmain-
taining the existing infra-structureresources.This obviously reduceghe costsinvolved
andincreasesystems capacity We do this by evaluatinga managemenpolicy for orga-
nizing cachehierarchywithin anISP



(a) Client (b) ProxyCache (c) EndSener

Figure 2: ADF Abstractions. Within components, (A) stands for Aggregator , (D)
for Disaggregator, and (F) for Filter. Points of generation and absorp-
tion of requests are represented in black

4. Framework and Metrics

In order to study and understanda systemof caches,we are using the ADF
framework andthe metric Entropy, proposedy [Fonsecatal.,2003. The ADF frame-
work representghetransformation®n requesstreamghatcommonlyoccurin the Web:
streamaggreation,disaggrgation,andfiltering.

4.1. ADF Framework

This abstractiorviews the topology of the Web systemasa graph,in which the
nodesrepresenpoints wherethe streamsmay be altered(suchas clients, seners and
caches)andthe edgesarepathsconnectinghesepoints.

Thenodedn this graphareof threedifferenttypes,dependingpn whattheir effect
is on the Webtraffic: Aggregator(A), Disaggrgator(D) andFilters (F); differentcom-
ponentf the Webtopologymayberepresentetty combinationof thesethreekinds of
nodes.Therearealsoendpointnodeswhich cangenerateandabsorbrequeststheseare
clientsandseners,respectiely.

Thethreetypesof nodescorrespondo threephenomenaffecting streams:

e Client : Figure2(a)shavs how a client might be representedh the framework.
Therequesstreanthatausergenerategoesthroughafilter node(F) (thebrowser
cache).After this, this samerequesistreamis split into differentstreamsthatgo
to differentdestinationsover the Weh This canbe abstractedy a disaggrgator
(D) node.

e WebProxies: Figure2(b)shavstheconfiguratiorof aWebproxy cachesenerin
thegraph.lt is oftenlocatedat someintermediatgooint of thetopology between
mary clientsandmary seners. Whenrequestarereceved by a commoncache
sener throughdifferentTCP connectionghey areaggreatedin a singlestream,
sothatthecachesubsystenitself seesa singlestream.This canberepresentedly
anaggreyatornodein the graph.This aggr@atedstreamis thenprocessedby the
cacheandthemissstreanthatleavesthecachds theresultof afiltering operation
by the cache. The next nodeis a disaggrgatornode,from which several edges
leave, headedowardsdifferentsenersaswell asotherproxy seners.



e Web Sewver : The representatiofior a Web sener is shovn in Figure 2(c). In
thesenodes,thereoccursan aggregation operation,and several streamscoming
upwardaremultiplexedinto a singlestream.

Using the ADF framework to cateyorize Web streamtransformationsnto these
threekinds,we canstartto studythe popularitypropertiespeforeandafterthe effectsof
theseoperationspf therequesstreams.

4.2. Entropy

Many studiesabout Web traffic has been focusedon the temporal locality
propertiespresentedn the traces. The intuition of temporallocality is: “An object
just referencedhas a high probability of being referencedin the near future” (e.g.,
[Phalke andGopinath,1995]);

Recentlyanumberof authorshave focusedontwo waysin whichtemporalocal-
ity canarise.Theseparatiorof temporallocality into thesetwo effectswasfirst suggested
by Jin and Bestaros [Jin andBestaros,200qJ andby Mahanti, Eager andWilliamson
[Mahantietal.,2000]. Jin andBestarrostermedthesetwo effectspopularityandtempo-
ral locality. In this paperwe focusonly in the popularityeffect.

The popularity distribution of a workload are usually characterizedy the term
Zipf'sLaw[Glassman1994 Almeidaetal., 1996 Breslauetal., 1999. Zipf’sLaw states
thatthe popularityof then! mostpopularobjectis proportionalto 1/n. More generally
“Zipf-lik e” distributions have beenfound to approximatemary Web referencestreams
well. In sucha distribution:

P[O,] xn™®

in which P[O,] is the probability of areferenceo the n'* mostpopularobject;typically,
a<1.

The implication of Zipf-lik e distributions for referencestreamsis to shav that
mostreferencesreconcentrate@monga smallfractionof all of the objectsreferenced.

Rather a direct measureof suchdeviation is available: entropy. [Shannon 1948
T. M. CoverandJ.A. Thomas,199] The entrofy of a randomvariable X takingonn
possiblevalueswith probability p; is simply:

H(X)=- Enjpi log, p;- 1)

i=1

The entrofy measureshe deviation of X's distribution from the uniform distri-
bution. It takeson its maximumvalue (log,(n)) in the casewhereall symbolsof X are
equallylikely (i.e., p; = 1/n, i = 1,...,n.) It takesonits minimumvalue(zero)in the
casewhereonly onesymboloccur

Thereasorfor preferringentropy overthe Zipf exponenta is thatreal dataoften
doesnot fit a Zipf-lik e distribution perfectly As aresult, measurementf the Zipf expo-
nentcanbe subjectve [Fonsecatal., 2003. Thestrengthof the entrofy metricis thatit
requiresno modelingassumptioraboutthe data,andsocapturegpopularityskew equally
well whetherthetraceadheredo a powerlaw or not.



In estimatingH (X) from agivenlog, weview therequestén thelog asasequence
of symbolswhich aretherequesteabjects;we approximatehe probability p; of agiven
object: beingreferencedisthe numberof timesit appearsn thelog, dividedby thetotal
referencesn thelog. We thusobtainanempiricalprobability distribution over the setof
objectsin thelog. Thentheentropy H(X) is definedasin Equation(1). Notethat H (X)
only dependson the probabilitiesof occurrenceof the differentobjects,and not on the
relative orderin whichthey areoccur

Entropy needsanormalizatiortheavoid thedependencenthenumberof distinct
objectsthat are referencedn the log. The appropriatenormalizationis basedon the
largestpossiblevalueof H(X), namelyHy(N). Thereforethe metric for popularitywe
will useis thenormalizedentroyy:

H" = H(X)/Ho(N) (2)

whereNN is thenumberof distinctreferencesn thelog.

In [Fonsecaetal., 2003, they use H" with thefollowing transformatiorof H":

H* = —logy, (1 - H") (3

H* (called“scaled” normalizedentrofy) is usedbecaused™ canoftenbe quite closeto
1, makingit hardto distinguishon plots.

5. Exploiting Entr opy to Impr ove Hierar chy Performance

Interestingdesignissuesarisewith cachehierarchies.As an example,thesesys-
temssuffer from the phenomenoridiminishing returns”thatmeanghatthefurtherupin
the hierarchythe cacheis, thelesslikely onecanfind a documenbf interestin a cache.
Thisfactoccursdespitehefactthathigherlevel cachesareoftenlargein sizethanlower-
level cachegWilliamson,2003. Theseobsenationssuggesthatthe hierarchiesaarenot
well-designedIn this context, we evaluateoneapproachthatmightimprove overall per
formanceof a Web proxy cachingsystemwhichwe called”cache-layering”.

To explain the ideabehindthis approach)ets considerthe configurationin Fig-
ure 3. This Figure shavs a two-level cachesystemwith two cachegchild) in the first
level and one (parent)in the second. The users requestsare receved directly by the
cachesat thefirst level andthe requestghat cannotbe satisfiedby the first-level caches
are forwardedto the parentcache. Requestdrom the two first-level cachesare aggre-
gatedformingtheinput streamof the secondevel cache.Thereis nodirectly interaction
betweerthetwo lower-level caches.
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Figure 3: Two Level Caching System Hierarchy

When analyzingtraffic aggregationin the secondlevel, it falls into one of the
following four cases:

1. Complementingraces

Trace 1: AAAB
Trace 2: BBBA

2. EqualTraces

Trace 1: AAAA
Trace 2: AAAA

3. Disjoint Traces
Trace 1: AABCDDA
Trace 2: ZZKYHHR
4. OverlappingTraces
Trace 1: AbAcAdAe
Trace 2: Af AgAhAI

In casenumberl (complementingraces) despitethe sub-tracefiave somecon-
centrationof popularity it is lost whenthey are aggregated. The resultingtrace will
now have a uniform distribution, thatis, the entrofy increasesin the secondcase(equal
traces) thereis no variationof entroy whensub-tracesremeiged. Thethird case(dis-
joint objects),it wasverifiedthatthe resultingentroyy is the meanof the sub-tracesen-
tropy. In thefourth casgoverlappingiraces) aggreationdecreasesntrofy becausehere
is inter-traceoverlapping.In this casewhentracesl and2 aremeiged,the concentration
of popularityincreasesbecausebjects’ popularityis unchangedbut the popularity of
all otherobjectsdecreases.

We canseethataggreationcanresultin differentscalesof entrogy. In generaljt
is desirablejn orderto increasehit ratio of the second-lgel cacheto aggreateoutgoing
links of the first level caches(or even clients), in which the fourth caseoccursmore
frequently



As aconsequencef thosefacts,we evaluatea cachemanagemenpolicy consist-
ing of two layers. In this approachwe restrictthe first level from cachingimagesfiles
(i.e. jpeg andgif files). We call this schemécache-layering”.

The motivationbehindthe useof this modelis thefollowing. Sincethefirst-level
cachedry to filter out all the locality (i.e. popularity) presentn thetracesthis reduces
the documenthit ratio of the second-lgel cache.Whenwe restrictthefirst-level caches
from cachingsomekinds of documentswe expectthattwo phenomenaccur:

e thelikelihoodthatthe overlapof two outgoingmissstreamgfrom first-level) in-
creasessincethe documentswith the samecharacteristicgimages)outputfrom
themissstream®f thelower-level cachesThiswould producea higherdocument
hit ratioin the second-lgel cache.

e overallsystenstoragancreasessincesomeobjects(images)arenotreplicatedn
thelower-level caches.

We simulatedthis schemeusingactualproxiestraces,describedn the next sub-
section.We madeuseof two metricsto evaluatetheseschemesdocumenhit ratio, which
is the traditionalmetric usedby previous work and meanshe numberof requestsatis-
fied by the cachedividedby thetotal numberof requestseerby the cacheandEntropy,
describedn Section5.

5.1. Workload Characterization

In this sectionwe characterizehe setof tracesfrom POP-MG[pop, ], aregional
Point of Presenceof the NationalResearctBackbong RNP-Brazil)[rnp, ], which senes
thestateof MinasGerais(Brazil). POP-MGsenes,besidesorporateclients,universities
andindividualsthatuselnternetvia radiotransmission.

POP-MGhasa cachesystemhierarchyorganizedasfollows. It hastwo levels
of caches.In thefirst level, it hastwo cachesnachineswherethey make load balance
to receve client’s requestdirectly. In the next upperlevel, it containstwo machines:
oneto answerrequestfor nationalfiles (i.e. domainbr), and otherto answerrequest
for non-nationafiles (i.e. notdomainbr). Thelower level recevesrequestslirectfrom
clientsand,if missesccur it forwardsthemto thenext level, demultiplexing into thetwo
second-lgel machinesaccordingo thedomainsuffix (.br or!.br). POP-MGschemecan
beseenin Figure4.

We obtained two days of access logs from the two level 1
caches machines, which we called popl and pop2 The logs follow the
Squid [National Laboratoryfor Applied Network Research], format and the details
of the workload are summarizedn Table1. The workloadis assumedo containonly
staticobjects.
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Figure 4. POP-MG ISP Scheme

Item Pop-1 Pop-2
Period 10/18- 10/19/01| 10/18- 10/19/01
Totalrequests 902,998 919,541
Imagefile requests 542,022 529,041
Imagefile requestg%o of total) 60% 57%
Uniquedocuments 238,880 237,290
Uniquedocumentg% of requests) | 26% 26%
One-timers 164,011 164,878
One-timers(%®of uniguedocuments) 18% 18%
Working set(Mbytes) 1,887 2,058
Working setof imagegMbytes) 806 865
Smallesfile size(bytes) 0 0
Largestfile size(bytes) 3,266,488 1,078,310
Meanfile size(bytes) 8,283 9,095
Smallesimagefile size(bytes) 0 0
Largestimagefile size(bytes) 1,607,753 866,455
Meanimagefile size(bytes) 5,092 5,463
Normalizedentropy 0.8563 0.8336
(Scaled)Normalizedentrory 0.8426 0.7788

Table 1: Workload Features

Looking atthelog featureswe canseethat,althoughthe uniqueobjectsrepresent
approximately26% of thetotal of requestsn both casesthe concentratiorof popularity
is low, indicatedby thevalueof H,, closeto 1. In addition,thelogs presentl8% of one-
timersobjects.Thesearetheobjectsthatrecevedonly onereferenceluringthe periodof
time of thelogs. Clearly, thereis no benefitof cachingone-timersdocuments.

Theworking setshave sizesl,887and2,058Mbytesandthoserepresenthe max-
imum size of the lower-level cacheshat storesall the objectspresentin the reference
stream(whenall objectsarecacheable).

Figures5 and6 shaw the sizedistribution of the documentdor bothtraces.We



canseethatthesmalldocumentappeamorefrequentlyin bothprofiles. Figures7 and8
show the samesizedistribution for imagefiles.
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5.2. Experimental Methodology
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This Sectiondiscusseshe methodologyusedfor the simulationswe have per

formed. We have constructedh systemof cacheausingcachesimulatorsbasedon LRU

replacemenpolicy. Thesesimulatorsareableto outputmetricssuchasthe documentit
ratio of an execution. One problemthat may ariseis that our cachesimulatorexecution
includescold start missesthatis, the cacheis empty beforethe simulationstarts. We
have tried to diminishthis effect by warmingup the cachesimulatorswith a preliminary
execution,usingtherequesstreams.

The cachesimulatorsareorganizedasshown in Figure9. This Figurealsoshovs

the pointswherewe submitthe workload (requesstreams}o the systemandcollectthe

metrics. Points1 and 2 representhe placewherewe submittedthe pop-1 and pop-2

workloads.Points3 and4 arewherewe collectedthe aggregjatedentrogy from thelower-

level cachesandthe entropy of systems outputrespectiely.
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Thefirst experimentconsidersall documentsascacheableConsideringall static
documentsscacheablés the mostcommonmanagemenrpolicy in practice.This exper
imentwill beusedasa referenceor cache-layeringxperiment.We calledthis configu-
ration,the commorpolicy.

In addition,we developthefile type-based-layeringkxperimentwhich consistof
treatingimagesasnon-cacheabla thelower-level caches.

In ourexperimentsve have simulatedhesemanagemenmioliciesfor severalcache
sizes.We equallyincreasehe cachesizesfollowing a power of 2, startingfrom 1A/b to
1024 Mb. The maximumvaluerepresentsnorethanthe 50% of the size of the working
set.

6. Experimental Results

This Sectionpresentghe resultsachieved by the simulationof the two manage-
mentpoliciesusingthe empiricaltraces.

Analyzingtheinternalprofile of eachsystemconfigurationof cachess usefulfor
the understandingf systems behaior. For this purpose our initial analysisconsisted
of collectingthe documentit ratio of eachcacheof the system for eachmanagement
policy.

The behaior for the commonpolicy is shavn in Figure 10. Using this config-
uration,we canseethatthefirst-level cachesachiese higherdocumentit ratio thanthe
second-lgel cache.Thereasorfor thatprofileis thatfiltering absorbgartof thetemporal
locality of arequeststreamandgenerates missstreamconsistingof evenly distributed
referencego fairly popularobjects. This meansthat first-level cachedilter out the lo-
cality propertyof the streampresentedo the parentcache. From this scenariowe can
concludethatthe second-lgel caches notwell exploited.

This behaior is invertedwhen analyzingthe profile of file-type-based-layering
managemenpolicy. This inversionis dueto missescausedy the non-cateablefiles



in the first level, andto the potentialhits that the secondlevel canachiese by caching
imagefiles. Furthermorepbjectsof the sametype (images)arebeingaggreatedin the
input streamof the parentcache comingfrom the missstreamsf thefirst-level caches.
Becauseof this, the overlappingof the two tracesincreasesdecreasinghe entrogy of
theinput streampresentedo the parentcache.This effectis shovn in Figure 12, which
showvstheentropy of theaggregatedstreamformedby the missstream®f thelowerlevel
caches.Looking at this plot, we canseethat the entropy decreasesvhenwe simulated
file-type-based-layerinmpanagemenpolicy ratherthanthe commonpolicy. Corversely
presenting streamwith lower Entropy to theparenttachdeadstheachievemeniof better
performancepr higherdocumenthit ratio, in this level, asshovn by the curve for file-
type-based-layeringn Figurel3.
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Restrictingthe first-level cachesfrom storeimagefiles, reducesthe numberof
copiesof thesefiles in whole system sincethey will be storedonly in the secondevel.
Increasingstoragemeanghatmorefiles canbe cachedoy the systemthereforejncreas-
ing thedocumenhit ratio of theentiresystem Figure14 shovsthe numberof files stored
in the systemin the end of the executionof the experiment,aswe vary cachesize. We
canseethatfile-type-based-layerinpmnanagemerpolicy wasableto storemorefiles, for
all cachesizes ratherthanthe commonpolicy.
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Figure 14: Storage at the end of simulation execution

Finally, the efficacy improvementof the systemcan be evaluatedby two ways.
First, we expectthat the output streamof the system,which will be submittedto the
backbondink, hadthe minimum numberof requestsas possible. This meansthat we
wantto avoid the samedocumento appeamorethanoncein this stream reducingthe
bandwidthneededrom the backbondink. Thus,we canseizethis effect by measuring
theentroy of thesystem$outputstream We dothisfor thetwo managemergolicies,for
severalsizesof caches Figure 15 shows the entropy of the whole system$ missstream.
We cansee,looking at the plot, that file-type-based-layeringroduceshigherentrogy in
the systems output streamthanthe commonpolicy, for all sizesof cachesconsidered.
Similarresultswerefoundanalyzingthetotal documentit ratio of the system Figure16
shawsthattheuseof thecache-layeringpproacttanimprovetheoverall systenhit ratio.
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7. Conclusion

An ISP (InternetServiceProvider) configuresa multi-level cachesystemin order
to reducetheamountof bandwidthneededo seneits clientsandto improve usersaccess
performanceln this paperwe evaluatea cachesystemmanagementolicy within anISR
whichwe call "cache-layering”.



Using Entropy measurementand ADF, our simulationswith actualproxy traces
found that the use of "cache-layering’can increasethe efficacy of the parentcaches,
increasdhetotal systemstorageand,thereforejncreaseshe overall systemefficacy.

The systems improvementswere demonstratedby showving the increaseof en-
tropy of the outputstreamof the whole systemandthe increaseof the hit ratio, using
thecache-layerin@pproactproposedSincetheinfra-structureresourcesmieededareun-
changedthereis alsocostreductionfor the ISP point of view.

In future analysis,we intend to considerfile-size-based-layeringpproachthat
consistsof specifyinga sizethresholdS andallow the lower level cachedo storeonly
files smallerthanS, while theupperlevel caches allowedto storefiles of all sizes.This
approactprovidesa naturalpartitioningof the documentspace usingminimal informa-
tion sincedocumensizeinformationis availableto Websenersandproxiesin theHTTP
responséneader

Themain contribution of this paperis to shav how entrory andADF canbeused
to evaluatethe performanceof Web cachingsystemschemes.
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