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Abstract. AnISP(InternetServiceProvider)configuresa multi-levelcachesys-
temin order to reducetheamountof bandwidthneededto serveits clientsand
to improve user’s accessperformance. We evaluatea cache systemmanage-
mentpolicy within an ISP, which wecall ”cache-layering”,usinga new frame-
workanda metricfor thecharacterizationof Webtraffic andsystemdesign:the
ADF(Aggregation,DisaggregationandFiltering) framework andEntropy. Us-
ing Entropy, theADF framework andsimulationswith actualproxy traces,we
wereableto find that theuseof ”cache-layering”canimprovesystem’sefficacy
andreducecostswithin an ISP.

1. Intr oduction

Growth, increasingdemandandascendingnumberof usersare termsthat have
becomefrequentin the literatureto describetheWebphenomenon.In fact, thenumber
of users,aswell astheloadthatthey imposeon thenetwork, have increasedrapidly over
the last few years. In this context, Web proxieshave gainedwidespreadpopularityas
it functionasintermediariesbetweenWebclients(browsers)andWebservers,aimingon
reducingtheamountof databeingtransmittedover theInternetand,therefore,increasing
theWebperformanceexperiencedby aclient.

A proxy server canbeunderstoodasanaggregatoranda disaggregatorof traffic.
Suchserversareusuallyusedto delimit a portion of network, in which nodeshave the
samegeographiclocation. For instance,it is often placedasa point of communication
betweena local areanetwork(LAN) andtheInternet.In this configuration,every request
originatedby a client belongingto the LAN, andevery responsefrom the Web, passes
throughthe proxy server. Whena file requestis madeby a client within the LAN, not
only doesit forward the requestto the destinationWeb server, but it also receives the
incomingresponsein the oppositedirection. In additionto forwardingthe received file
to thedestinationclient, it storesa copy in its local cache.This copy providestheability
to satisfyfuture clientsrequeststo the samefile without the necessityof contactingthe
end-server again. Sinceevery client requestpassesthroughthe proxy server, we say
that it aggregatesthesequencesof requests,alsoknown asstreamsof requests,into one
singlestreamthatwill beprocessedby thecacheapplication.In othersense,we canalso



considertheproxy server asa traffic disaggregator, sinceit distributestherequestsfrom
its local clientsto severalTCP’pipes’ thatgo to differentdestinationsover theInternet.

As theproxy server aggregatesanddisaggregatestraffic, it playsits mostimpor-
tantrole — a filter. Whenthestreamsof requestsfor Webobjects,originatedby clients,
passthrougha proxy server, only the requeststhat causeda miss in the proxy cache
areforwardedin thedirectionof the destinationWeb server. On the otherhand,the hit
requestsareserved by the proxy server that, transparently, originatesa responseto the
client.

Aggregation,disaggregationandfiltering arethethreephenomenathatstreamsof
requestsaresubjectedto asthey passthroughproxiesservers.

The Web cachingsystemconsistsof a multi-level proxy cache.In this configu-
ration the cachelocatedin the end-usermachine(Web browsercache)is in the lowest
level of the hierarchy. Onelevel above, therearethe intranetcaches,which consistof
proxiesof universitiesandorganizations.As weascendin thehierarchy, regionalproxies
appearandsoon. A requestthatcannotbesatisfiedby oneproxycacheis sentto aparent
proxy until it canbe satisfiedor, asthe last option, the destinationserver be contacted.
Thedesignof aneffective proxy hierarchy, regardingto theregional locationof its com-
ponents,the sizeof eachcacheandtheconfigurationof the levels involvesthe studyof
how thepropertiesof thestreamschangeasthey arebeingalteredby theproxiesservers.
However, theInternetis a collectionof independentsystems(or networks)composedby
independentcomponentsand,therefore,its configurationis notoverone’scontrol.

An ISP(InternetServiceProvider) configuresa multi-level cachesystemin order
to reducetheamountof bandwidthneededto serve its clientsandimprove user’s access
performance.Thecomponentsof thiscachesystemareusuallyconnectedby ahigh-speed
network (i.e. �������
	���
 LAN) andthe ISP administratorhasthe entirecontrol over the
configurationof thehierarchyandits components.Thismeansthatonecanchangeall the
structureandconfigurationof this systemto improveefficacy.

This flexibility motivatedus to evaluatea cachesystemstructurewithin an ISP,
which we call ”cache-layering”. To do this, we madeuse of a new framework and
metric for the characterizationof Web traffic andsystemdesign. For instance,we use
theADF(Aggregation,DisaggregationandFiltering) framework andtheEntropy metric
[Fonsecaet al., 2003]. ADF is usedto representthe transformationsthat occur in the
streamsof requestasthey passthroughtheInternetTopology, while Entropy is a metric
proposedto characterizethepopularityprofile in asequenceof requests.

Previous works madeuse of hit ratio and curve fitting of the popularity dis-
tribution to evaluate Web cache systems. As this approachpresentslimitations
[Fonsecaet al., 2003], we show how thenew metricscanbeusedto accomplishthetask.
Using Entropy combinedwith ADF andsimulationswith actualproxy traces,we were
ableto find thattheuseof ”cache-layering”canimproveaccessperformanceandreduce
costswithin anISP.



2. RelatedWork

Therehasbeenconsiderablework donein the study Web requeststreams. In
particular, many studieshave looked at the locality properties[Almeidaet al., 1996,
JinandBestavros,2000]of suchstreams.Locality is thepropertyfoundin a streamthat
statesthat referencesto a setof objectstendto beclosein time to referencesto another
setof objects.Thesestudiesweremotivatedby the impactof locality on thedesignand
performanceof cachingandprefetchingsystems.

As examples of the application of these studies in systems engineering,
they have informed the development of cache replacementpolicies [Wang,1999,
CaoandIrani, 1997], inter-cachecoordinationprotocols[Fanet al., 2000] andprefetch-
ing algorithms[Bestavros,1995].

The first ideason how to characterizethe effects of proxiesin a streamof re-
questswere first introducedby [Weikle et al., 1998]. This work introducesthe view
of cachesas filters, and comparespropertiesof incoming and outgoing streamsof
references,in the context of program memory references. In the context of Web
caching,Mahanti,Williamson andEager[Mahantiet al., 2000] studyhow temporallo-
cality changesat different levels in the cachinghierarchy. They show that the concen-
tration of referencestendsto diminish, andthe tail of the Zipf ’s distribution increases,
as one goesup the cachinghierarchy. This effect is also notedand characterizedin
[Williamson,2002, Doyle et al., 2001].

While [Williamson,2002]doesnot considertransformationsotherthanfiltering,
[Fonsecaet al., 2003] introducedthestudyof two othertransformationsthatstreamsare
subjectto: AggregationandDisaggregation.They havealsoorganizedthesetransforma-
tionsin a framework, proposedandvalidatedmetricsfor theanalysisof temporallocality
asthestreamsmove throughthis framework.

[Williamson,2002] proposesa cachemanagementpolicy, in which thefirst level
of thecachehierarchyis allowedto cacheonly documentsbelow acertainthreshold� of
file size,andtheupperlevel is allowedto cacheonly documentsthatsizeis greaterthan� . They concludethatthis scheme,calleda file-size-basedpartitioning,canimprove the
overall performanceof thesystem.We evaluatea similar idea,however we restrictonly
thefirst level from cachingimagefiles, allowing thesecondlevel to cachingall objects.
Wecall thisscheme”cachelayering”. Insteadof aimingonevaluatereplacementpolicies,
asin [Williamson,2002],we areinterestedin exploiting andevaluatingfile-type-based-
layering, usingthetoolsproposedby [Fonsecaet al., 2003].

3. ISP Cost-Optimal Problem

An ISP (InternetServiceProvider) is a company that provides a backboneac-
cessfor clientswithin a regional location. In additionto servingindividuals,ISPsalso
serve largecompanies,providing adirectconnectionfrom thecompany’snetworksto the
Internet.

Therefore,theISPcontractsanamountof bandwidthfromoneormorebackbones.
FromtheISPpointof view, it is interestingto maximizethenumberof clients.However,
thegrowth of numberof userscannotdecreasesthequality of serviceexperiencedby the



clients.In otherwords,it hasto preserve theSLA (ServiceLevel Agreement)established
with eachclient. This meansthat it hasto improve systemscapacity, asmore clients
imposemoreloadontothesystem.Ontheotherhand,it is alsointerestingto reducecosts
with bandwidthpurchasesfrom thebackbones.Nonetheless,alsopreservingtheSLA.

It is worthynotingthatnotall client’s requestsmust,necessarily, passthroughthe
backbonelink. Onceadocumentwasfirstly requestedby anISPclient, it canbestoredin
thelocal ISPcachesystemand,thus,futurerequeststo thesamefile canbeservedlocally.
As a result,for thesakeof costreductionandimprovementof user’saccessperformance,
the ISP configuresa multi-level cachesystem. An illustration of an ISP scheme,just
described,canbeseenin Figure1.

Figure 1: ISP Scheme: a set of Web clients connect to an ISP to request docu-
ments, from its local cache, which forwards miss requests to the Inter-
net using the backbone link.

TheISPcachesystemcanreducetheamountof bandwidthneededfrom theback-
boneandreducesthesystem’s responsetime to serveuser’s requests.Thecomponentsof
this cachesystem(i.e. cachemachines)areusuallyconnectedby a high-speednetwork
(i.e. �������
	���
 LAN) andthe ISP administratorhasthe entirecontrol over the configu-
ration of the hierarchyandits components.Although a cachesystemcanimprove ISP
capacityandreducecosts,thereis anoptimalcachesystemsizethatbringscostsof infra-
structureandbandwidthpurchaseto minimumandthesystemcapacityto theperformance
level agreedwith clients. Hipotetically, going to extremes,increasingcachesystemsize
to infinity doesnotdischargethepurchaseof somebandwidth.Conversely, cachesystem
of sizezeromeansthatall theclient’s requestsmustpassthroughISPbackbonelink. The
ISPCost-Optimalproblemconsistsof findingtheoptimalsizeof thecachesystem,which
would reducetheinfra-structureandbackbonecostsandmaximizetheISPcapacity.

Cachehierarchieshave proven to be a fundamentalelementfor scalability of
cachingsystems[Williamson,2002]. Insteadof tackling the ISP cost-optimalproblem,
we aim on improving cachesystemefficacy, improving thehierarchyschemeandmain-
taining the existing infra-structureresources.This obviously reducesthe costsinvolved
andincreasesystem’s capacity. We do this by evaluatinga managementpolicy for orga-
nizingcachehierarchywithin anISP.
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Figure 2: ADF Abstractions. Within components, (A) stands for Aggregator , (D)
for Disaggregator, and (F) for Filter. Points of generation and absorp-
tion of requests are represented in black

4. Framework and Metrics

In order to study and understanda systemof caches,we are using the ADF
framework andthemetricEntropy, proposedby [Fonsecaet al., 2003]. TheADF frame-
work representsthetransformationson requeststreamsthatcommonlyoccurin theWeb:
streamaggregation,disaggregation,andfiltering.

4.1. ADF Framework

This abstractionviews the topologyof the Web systemasa graph,in which the
nodesrepresentpoints wherethe streamsmay be altered(suchas clients, servers and
caches),andtheedgesarepathsconnectingthesepoints.

Thenodesin thisgraphareof threedifferenttypes,dependingonwhattheireffect
is on theWeb traffic: Aggregator(A), Disaggregator(D) andFilters (F); differentcom-
ponentsof theWebtopologymayberepresentedby combinationsof thesethreekindsof
nodes.Therearealsoendpointnodes,which cangenerateandabsorbrequests;theseare
clientsandservers,respectively.

Thethreetypesof nodescorrespondto threephenomenaaffectingstreams:� Client : Figure2(a) shows how a client might be representedin the framework.
Therequeststreamthatausergeneratesgoesthroughafilter node(F) (thebrowser
cache).After this, this samerequeststreamis split into differentstreams,thatgo
to differentdestinationsover theWeb. This canbeabstractedby a disaggregator
(D) node.� WebProxies: Figure2(b)showstheconfigurationof aWebproxycacheserverin
thegraph.It is oftenlocatedat someintermediatepoint of thetopology, between
many clientsandmany servers. Whenrequestsarereceivedby a commoncache
server throughdifferentTCPconnectionsthey areaggregatedin a singlestream,
sothatthecachesubsystemitself seesasinglestream.Thiscanberepresentedby
anaggregatornodein thegraph.This aggregatedstreamis thenprocessedby the
cache,andthemissstreamthatleavesthecacheis theresultof afiltering operation
by the cache.The next nodeis a disaggregatornode,from which several edges
leave,headedtowardsdifferentserversaswell asotherproxyservers.



� Web Server : The representationfor a Web server is shown in Figure2(c). In
thesenodes,thereoccursan aggregationoperation,andseveral streamscoming
upwardaremultiplexedinto asinglestream.

Using the ADF framework to categorizeWeb streamtransformationsinto these
threekinds,we canstartto studythepopularityproperties,beforeandaftertheeffectsof
theseoperations,of therequeststreams.

4.2. Entropy

Many studies about Web traffic has been focused on the temporal locality
propertiespresentedin the traces. The intuition of temporal locality is: “An object
just referencedhas a high probability of being referencedin the near future” (e.g.,
[PhalkeandGopinath,1995]);

Recently, anumberof authorshavefocusedontwo waysin whichtemporallocal-
ity canarise.Theseparationof temporallocality into thesetwo effectswasfirst suggested
by Jin andBestavros [Jin andBestavros,2000] andby Mahanti,Eager, andWilliamson
[Mahantiet al., 2000]. Jin andBestavrostermedthesetwo effectspopularityandtempo-
ral locality. In this paperwe focusonly in thepopularityeffect.

The popularitydistribution of a workloadareusuallycharacterizedby the term
Zipf’sLaw[Glassman,1994, Almeidaetal., 1996, Breslauet al., 1999]. Zipf ’sLaw states
thatthepopularityof the ����� mostpopularobjectis proportionalto ����� . More generally,
“Zipf-lik e” distributionshave beenfound to approximatemany Web referencestreams
well. In sucha distribution: �������! �" �$#&%
in which

�������! 
is theprobabilityof a referenceto the � ��� mostpopularobject;typically,')( � .

The implication of Zipf-lik e distributions for referencestreamsis to show that
mostreferencesareconcentratedamongasmallfractionof all of theobjectsreferenced.

Rather, a directmeasureof suchdeviation is available: entropy. [Shannon,1948,
T. M. CoverandJ.A. Thomas,1991] The entropy of a randomvariable * taking on �
possiblevalueswith probability �,+ is simply:

-). *0/2143
�
5
+�6 � �7+!8:9�;�<��,+>= (1)

The entropy measuresthe deviation of * ’s distribution from the uniform distri-
bution. It takeson its maximumvalue( 8:9�; < . �?/ ) in thecasewhereall symbolsof * are
equallylikely (i.e., �,+@1A�!���@BDCE1F��BG=G=G=HBI� .) It takeson its minimumvalue(zero)in the
casewhereonly onesymboloccur.

Thereasonfor preferringentropy over theZipf exponent' is that realdataoften
doesnot fit a Zipf-lik e distribution perfectly. As a result,measurementof theZipf expo-
nentcanbesubjective [Fonsecaet al., 2003]. Thestrengthof theentropy metric is that it
requiresnomodelingassumptionaboutthedata,andsocapturespopularityskew equally
well whetherthetraceadheresto apower law or not.



In estimating
-J. *0/ fromagivenlog,weview therequestsin thelog asasequence

of symbols,whicharetherequestedobjects;weapproximatetheprobability �,+ of agiven
object C beingreferencedasthenumberof timesit appearsin thelog, dividedby thetotal
referencesin thelog. We thusobtainanempiricalprobabilitydistribution over thesetof
objectsin thelog. Thentheentropy

-J. *0/ is definedasin Equation(1). Notethat
-J. *0/

only dependson the probabilitiesof occurrenceof the differentobjects,andnot on the
relativeorderin which they areoccur.

Entropy needsanormalizationtheavoid thedependenceonthenumberof distinct
objectsthat are referencedin the log. The appropriatenormalizationis basedon the
largestpossiblevalueof

-J. *0/ , namely
-LKM.ON / . Thereforethemetric for popularitywe

will useis thenormalizedentropy:

- � 1 -J. *0/P� -QK!.ON / (2)

where
N

is thenumberof distinctreferencesin thelog.

In [Fonsecaetal., 2003], they use
- �

with thefollowing transformationof
- �

:

-SR 1T3S8:9�; � K . �D3 - � / (3)

- R
(called“scaled”normalizedentropy) is usedbecause

- �
canoftenbequitecloseto

1, makingit hardto distinguishon plots.

5. Exploiting Entr opy to Impr oveHierar chy Performance

Interestingdesignissuesarisewith cachehierarchies.As anexample,thesesys-
temssuffer from thephenomenon”diminishing returns”thatmeansthatthefurtherup in
thehierarchythecacheis, the lesslikely onecanfind a documentof interestin a cache.
This factoccursdespitethefactthathigher-level cachesareoftenlargein sizethanlower-
level caches[Williamson,2002]. Theseobservationssuggestthat thehierarchiesarenot
well-designed.In this context, we evaluateoneapproachthatmight improveoverall per-
formanceof aWebproxycachingsystem,which wecalled”cache-layering”.

To explain the ideabehindthis approach,lets considerthe configurationin Fig-
ure 3. This Figureshows a two-level cachesystemwith two caches(child) in the first
level and one (parent)in the second. The user’s requestsare received directly by the
cachesat thefirst level andthe requeststhatcannotbesatisfiedby thefirst-level caches
are forwardedto the parentcache. Requestsfrom the two first-level cachesareaggre-
gated,formingtheinputstreamof thesecondlevel cache.Thereis nodirectly interaction
betweenthetwo lower-level caches.



Figure 3: Two Level Caching System Hierarchy

When analyzingtraffic aggregation in the secondlevel, it falls into one of the
following four cases:

1. ComplementingTraces

Trace 1: AAAB
Trace 2: BBBA

2. EqualTraces

Trace 1: AAAA
Trace 2: AAAA

3. Disjoint Traces
Trace 1: AABCDDA
Trace 2: ZZKYHHR

4. OverlappingTraces
Trace 1: AbAcAdAe
Trace 2: AfAgAhAi

In casenumber1 (complementingtraces),despitethesub-traceshave somecon-
centrationof popularity, it is lost when they are aggregated. The resulting tracewill
now have a uniform distribution, that is, theentropy increases.In thesecondcase(equal
traces),thereis no variationof entropy whensub-tracesaremerged.Thethird case(dis-
joint objects),it wasverifiedthattheresultingentropy is themeanof thesub-traces’en-
tropy. In thefourthcase(overlappingtraces),aggregationdecreasesentropy becausethere
is inter-traceoverlapping.In this case,whentraces1 and2 aremerged,theconcentration
of popularity increases,becauseobjects’popularity is unchanged,but the popularityof
all otherobjectsdecreases.

Wecanseethataggregationcanresultin differentscalesof entropy. In general,it
is desirable,in orderto increasehit ratioof thesecond-level cache,to aggregateoutgoing
links of the first level caches(or even clients), in which the fourth caseoccursmore
frequently.



As aconsequenceof thosefacts,weevaluateacachemanagementpolicy consist-
ing of two layers. In this approach,we restrict the first level from cachingimagesfiles
(i.e. jpeg andgif files). Wecall this scheme”cache-layering”.

Themotivationbehindtheuseof this modelis thefollowing. Sincethefirst-level
cachestry to filter out all the locality (i.e. popularity)presentin the traces,this reduces
thedocumenthit ratio of thesecond-level cache.Whenwe restrictthefirst-level caches
from cachingsomekindsof documents,weexpectthattwo phenomenaoccur:

� thelikelihoodthattheoverlapof two outgoingmissstreams(from first-level) in-
creases,sincethedocumentswith thesamecharacteristics(images)outputfrom
themissstreamsof thelower-level caches.Thiswouldproduceahigherdocument
hit ratio in thesecond-level cache.� overallsystemstorageincreases,sincesomeobjects(images)arenot replicatedin
thelower-level caches.

We simulatedthis schemeusingactualproxiestraces,describedin thenext sub-
section.Wemadeuseof two metricsto evaluatetheseschemes:documenthit ratio, which
is the traditionalmetricusedby previouswork andmeansthenumberof requestssatis-
fiedby thecache,dividedby thetotalnumberof requestsseenby thecache,andEntropy,
describedin Section5.

5.1. Workload Characterization

In this section,we characterizethesetof tracesfrom POP-MG[pop, ], a regional
Point of Presenceof theNationalResearchBackbone(RNP-Brazil)[rnp, ], which serves
thestateof MinasGerais(Brazil). POP-MGserves,besidescorporateclients,universities
andindividualsthatuseInternetvia radiotransmission.

POP-MGhasa cachesystemhierarchyorganizedas follows. It hastwo levels
of caches.In the first level, it hastwo cachesmachines,wherethey make load balance
to receive client’s requestdirectly. In the next upper level, it containstwo machines:
one to answerrequestfor nationalfiles (i.e. domain.br), and other to answerrequest
for non-nationalfiles (i.e. not domain.br). The lower level receivesrequestsdirect from
clientsand,if missesoccur, it forwardsthemto thenext level,demultiplexing into thetwo
second-level machines,accordingto thedomainsuffix (.br or !.br). POP-MGschemecan
beseenin Figure4.

We obtained two days of access logs from the two level 1
caches machines, which we called pop1 and pop2. The logs follow the
Squid [NationalLaboratoryfor AppliedNetwork Research,] format and the details
of the workloadaresummarizedin Table1. The workloadis assumedto containonly
staticobjects.



Figure 4: POP-MG ISP Scheme

Item Pop-1 Pop-2
Period 10/18- 10/19/01 10/18- 10/19/01
Total requests 902,998 919,541
Imagefile requests 542,022 529,041
Imagefile requests(% of total) 60% 57%
Uniquedocuments 238,880 237,290
Uniquedocuments(% of requests) 26% 26%
One-timers 164,011 164,878
One-timers(%of uniquedocuments) 18% 18%
Workingset(Mbytes) 1,887 2,058
Workingsetof images(Mbytes) 806 865
Smallestfile size(bytes) 0 0
Largestfile size(bytes) 3,266,488 1,078,310
Meanfile size(bytes) 8,283 9,095
Smallestimagefile size(bytes) 0 0
Largestimagefile size(bytes) 1,607,753 866,455
Meanimagefile size(bytes) 5,092 5,463
Normalizedentropy 0.8563 0.8336
(Scaled)Normalizedentropy 0.8426 0.7788

Table 1: Workload Features

Lookingat thelog features,wecanseethat,althoughtheuniqueobjectsrepresent
approximately26%of thetotal of requestsin bothcases,theconcentrationof popularity
is low, indicatedby thevalueof

- �
closeto 1. In addition,thelogspresent18%of one-

timersobjects.Thesearetheobjectsthatreceivedonly onereferenceduringtheperiodof
timeof thelogs.Clearly, thereis no benefitof cachingone-timersdocuments.

Theworkingsetshavesizes1,887and2,058Mbytesandthoserepresentthemax-
imum sizeof the lower-level cachesthat storesall the objectspresentin the reference
stream(whenall objectsarecacheable).

Figures5 and6 show thesizedistribution of thedocumentsfor both traces.We



canseethatthesmalldocumentsappearmorefrequentlyin bothprofiles.Figures7 and8
show thesamesizedistribution for imagefiles.
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Figure 5: pop-1 Working Set
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Figure 6: pop-2 Working Set
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Figure 7: pop-1 Images Working
Set
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5.2. Experimental Methodology

This Sectiondiscussesthe methodologyusedfor the simulationswe have per-
formed. We have constructeda systemof cachesusingcachesimulatorsbasedon LRU
replacementpolicy. Thesesimulatorsareableto outputmetricssuchasthedocumenthit
ratio of anexecution. Oneproblemthatmayariseis thatour cachesimulatorexecution
includescold start misses,that is, the cacheis emptybeforethe simulationstarts. We
have tried to diminishthis effectby warmingup thecachessimulatorswith apreliminary
execution,usingtherequeststreams.

Thecachesimulatorsareorganizedasshown in Figure9. This Figurealsoshows
thepointswherewe submittheworkload(requeststreams)to thesystemandcollect the
metrics. Points1 and 2 representthe placewherewe submittedthe pop-1 and pop-2
workloads.Points3 and4 arewherewecollectedtheaggregatedentropy from thelower-
level cachesandtheentropy of system’soutputrespectively.



Figure 9: Entropy Measurements Points

Thefirst experimentconsidersall documentsascacheable.Consideringall static
documentsascacheableis themostcommonmanagementpolicy in practice.Thisexper-
imentwill beusedasa referencefor cache-layeringexperiment.We calledthis configu-
ration,thecommonpolicy.

In addition,wedevelopthefile type-based-layeringexperiment,whichconsistsof
treatingimagesasnon-cacheablein thelower-level caches.

In ourexperimentswehavesimulatedthesemanagementpoliciesfor severalcache
sizes.We equallyincreasethecachesizesfollowing a power of 2, startingfrom �!�
	 to����V�WX�
	 . Themaximumvaluerepresentsmorethanthe50%of thesizeof theworking
set.

6. Experimental Results

This Sectionpresentsthe resultsachievedby the simulationof the two manage-
mentpoliciesusingtheempiricaltraces.

Analyzingtheinternalprofileof eachsystemconfigurationof cachesis usefulfor
the understandingof system’s behavior. For this purpose,our initial analysisconsisted
of collectingthe documenthit ratio of eachcacheof the system,for eachmanagement
policy.

The behavior for the commonpolicy is shown in Figure10. Using this config-
uration,we canseethat thefirst-level cachesachieve higherdocumenthit ratio thanthe
second-level cache.Thereasonfor thatprofileis thatfiltering absorbspartof thetemporal
locality of a requeststreamandgeneratesa missstreamconsistingof evenly distributed
referencesto fairly popularobjects. This meansthat first-level cachesfilter out the lo-
cality propertyof the streampresentedto the parentcache.From this scenario,we can
concludethatthesecond-level cacheis notwell exploited.

This behavior is invertedwhenanalyzingthe profile of file-type-based-layering
managementpolicy. This inversionis dueto missescausedby the non-cacheablefiles



in the first level, andto the potentialhits that the secondlevel canachieve by caching
imagefiles. Furthermore,objectsof thesametype(images)arebeingaggregatedin the
input streamof theparentcache,comingfrom themissstreamsof thefirst-level caches.
Becauseof this, the overlappingof the two tracesincreases,decreasingthe entropy of
the input streampresentedto theparentcache.This effect is shown in Figure12, which
showstheentropy of theaggregatedstreamformedby themissstreamsof thelower-level
caches.Looking at this plot, we canseethat the entropy decreaseswhenwe simulated
file-type-based-layeringmanagementpolicy ratherthanthecommonpolicy. Conversely,
presentingastreamwith lowerEntropy to theparentcacheleadstheachievementof better
performance,or higherdocumenthit ratio, in this level, asshown by the curve for file-
type-based-layeringin Figure13.
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Figure 13: Second-Level Cache
Hit Ratio

Restrictingthe first-level cachesfrom storeimagefiles, reducesthe numberof
copiesof thesefiles in wholesystem,sincethey will bestoredonly in thesecondlevel.
Increasingstoragemeansthatmorefiles canbecachedby thesystem,therefore,increas-
ing thedocumenthit ratio of theentiresystem.Figure14showsthenumberof filesstored
in the systemin the endof the executionof theexperiment,aswe vary cachesize. We
canseethatfile-type-based-layeringmanagementpolicy wasableto storemorefiles, for
all cachesizes,ratherthanthecommonpolicy.
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Figure 14: Storage at the end of simulation execution

Finally, the efficacy improvementof the systemcanbe evaluatedby two ways.
First, we expect that the output streamof the system,which will be submittedto the
backbonelink, had the minimum numberof requestsaspossible. This meansthat we
want to avoid thesamedocumentto appearmorethanoncein this stream,reducingthe
bandwidthneededfrom thebackbonelink. Thus,we canseizethis effect by measuring
theentropy of thesystem’soutputstream.Wedothisfor thetwomanagementpolicies,for
severalsizesof caches.Figure15 shows theentropy of thewholesystem’s missstream.
We cansee,looking at theplot, thatfile-type-based-layeringproduceshigherentropy in
the system’s outputstreamthanthe commonpolicy, for all sizesof cachesconsidered.
Similar resultswerefoundanalyzingthetotaldocumenthit ratioof thesystem.Figure16
showsthattheuseof thecache-layeringapproachcanimprovetheoverallsystemhit ratio.
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Figure 15: Entropy of the output
stream of requests
(backbone)
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Figure 16: Whole System’s Hit
Ratio

7. Conclusion

An ISP(InternetServiceProvider) configuresa multi-level cachesystemin order
to reducetheamountof bandwidthneededto serveits clientsandto improveuser’saccess
performance.In thispaper, weevaluateacachesystemmanagementpolicy within anISP,
whichwecall ”cache-layering”.



UsingEntropy measurementsandADF, our simulationswith actualproxy traces
found that the useof ”cache-layering”can increasethe efficacy of the parentcaches,
increasethetotal systemstorageand,therefore,increasestheoverallsystemefficacy.

The system’s improvementsweredemonstratedby showing the increaseof en-
tropy of the outputstreamof the whole systemandthe increaseof the hit ratio, using
thecache-layeringapproachproposed.Sincetheinfra-structureresourcesneededareun-
changed,thereis alsocostreductionfor theISPpoint of view.

In future analysis,we intend to considerfile-size-based-layeringapproachthat
consistsof specifyinga sizethreshold� andallow the lower level cachesto storeonly
filessmallerthan � , while theupperlevel cacheis allowedto storefilesof all sizes.This
approachprovidesa naturalpartitioningof thedocumentspace,usingminimal informa-
tion sincedocumentsizeinformationis availableto Webserversandproxiesin theHTTP
responseheader.

Themaincontributionof thispaperis to show how entropy andADF canbeused
to evaluatetheperformanceof Webcachingsystemschemes.
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