Prova Final de Linguagens de Programacao
- DCC024 -
Sistemas de Informacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:
e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.

Quando escrever cédigo, a sintaxe correta é importante.

Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.
e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e Lembre-se do ganhador do Oscar de melhor filme em 2004. E lembre-se também: perguntando qual
foi o filme ganhador vocé perde a sua pergunta.

e A prova nao é dificil, ela é divertida, entao aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Questao 4 | Questao 5 | Questao 6

1. A linguagem C é notoria por apresentar problemas relacionados ao gerenciamento de memoéria. Qual
o problema com cada um dos programas abaixo?

(a) (3 pontos)

#include <stdio.h>
#include <stdlib.h>
void problem() {
int* i = (int*) malloc (sizeof(int));
*i = 3;
printf ("%d\n", *i);
}
int main() {
problem();
}

(b) (3 pontos)

#include <stdio.h>
#include <stdlib.h>
void dangling() {
int* i = (int*) malloc (sizeof(int));

int* j;
*i = 3;
free(i);
j = (int*) malloc (sizeof (int));
*j=8;
printf ("%d\n", *i);
}
int main() {
dangling();
}

(¢) (4 pontos)

#include <stdio.h>
unsigned* getMem() {
unsigned x[10];

int i;

for (i = 0; i < 10; i++) {
x[i] = i;

}

return Xx;

}

int main () {
unsigned *pl
unsigned *p2 = getMem();
printf (" [%ul = %d; [hul = %d\n", pl, *pl, p2, *p2);
printf ("p2 = %u\n", p2[0]);
pi[0] = 2;
printf("p2 = %u\n", p2[0]);

getMem() ;

2. As linguagens de programacao usualmente fornecem aos desenvolvedores algum mecanismo para a
implementacao de Tipos Abstratos de Dados, ou TADs. TADs sao tipos de dados definidos nao pelos
elementos em si, mas pelas propriedades que estes elementos possuem.

(a) (4 pontos) Existe um principio de programagcao que diz que tipos abstratos de dados deveriam ter
os detalhes de implementagao encapsulados. Por que o encapsulamento é importante?

(b) (3 pontos) Um outro principio reza que tipos abstratos de dados deveriam ser extensiveis, isto é,
idealmente o desenvolvedor deveria ser capaz de estender um TAD com novas propriedades. A
linguagem Python disponibiliza um mecanismo de extensdo. Como se dé a extensdo de TADs em
Python?

(¢) (3 pontos) Complete a tabela abaixo com wverdadeiro (V) e falso (F). Esta tabela distingue o
suporte que diferentes linguagens de programagao dao ao desenvolvimento de TADs. Use V
quando a linguagem disponibilizar alguma sintaxe propria para o encapsulamento ou a extensao
de TADs, e F doutro modo.

Encapsulamento | Extensao
C (F)
SML
Python (V)
Java

3. Esta questao refere-se a busca bindria, um algoritmo de pesquisa baseada no principio da divisao e
conquista que possui complexidade O(Inn).

(a) (5 pontos) A fungdo find abaixo, escrita em C, busca o elemento n em um arranjo de inteiros
1 de tamanho s. Implemente este mesmo algoritmo em Python — lembre-se, a sintaxe correta é
importante. A funcdo main é apenas um exemplo de uso, e vocé nao precisa implementéa-la.

int find(int* 1, int s, int n) { int main() {
if (s) { int 1[2] = {2, 3};
int left = 0; printf("TO: %d\n", find(1, 2, 2));
int right = s - 1; printf("T1: %d\n", find(1, 2, 3));
while (1) { printf("T2: %d\n", find(1l, 2, 4));
int index = (left + right) / 2; printf("T3: J%d\n", find(NULL, O, 1));
if (1[index] == n) { }
return 1;
} else if (left >= right) {
return O;

} else if (1[index] < n) {
left = index + 1;

} else {
right = index - 1;

}
}
return O;

}

(b) (5 pontos) Explique, em alto nivel, como vocé faria para implementar um algoritmo similar em
SML. O seu algoritmo deve permitir que sejam encontrados inteiros em uma estrutura de pesquisa
em tempo logaritmico.

4. Excecoes sao mecanismos que varias linguagens de programacgao provéem para o tratamento de erros.
Em Python, excecoes sao definidas como classes. Por exemplo, a classe ArithmeticException abaixo
representa um tipo de excegao particular:

class ArithmeticException(Exception):
def __init__(self, msg):
self.value = msg
def __str__(self):

return repr(self.value)

(a) (4 pontos) Implemente uma fungdo div em Python, que receba dois niimeros, n e d e retorne o
quociente n/d. A sua implementacio deve disparar uma excegdo do tipo ArithmeticException
com a mensagem ¢ ‘Denominador igual a zero.", caso o valor de d seja de fato zero.

(b) (6 pontos) Considere o programa abaixo, que testa a funcao div:

while True:
n = float(raw_input("Informe o dividendo: "))
d = float(raw_input("Informe o divisor: "))
if 4 == 0:
break
r = div(n, d)
print "Resultado = ", r

Este programa termina assim que o usudrio informa um valor de d igual a zero. Modifique esta
implementacao para tratar dois tipos de excegao:

e ValueError: se os caracteres fornecidos na entrada ndo definirem um ndmero em formato
valido. Neste caso, simplesmente peca ao usudrio que informe novos nimeros.

e ArithmeticException: se o valor fornecido para d for zero. Neste caso, termine o loop.

5. Diga qual o resultado de cada uma das sentengas abaixo, escritas em Prolog. Os resultados possiveis
sao:

e sim — Neste caso a unificagao é possivel. Vocé deve escrever qual o unificador mais geral que torna
a sentenga verdadeira.
e nio — Neste caso nao existe um unificador mais geral para a sentencga.

e erro — Erros acontecem quando varidveis nao foram suficientemente definidas.

(a) (1 Ponto) X = Y.

(b) (1 Ponto) (a, X, ¥) = (X, Y, b).
(c¢) (1 Ponto) (a, X, X) = (Y, X, b).
(d) (1 Ponto)X =1 + 2+ 3

(e) (1 Ponto) X is 1 + 2 + 3.

(f) (1 Ponto) X =:= 1 + 2 + 3.

(g) (2 Pontos) E = [1, 2], E = [FIG].

(h) (2 Pontos) X

I
»
]
1
-
+
A
b
1
,.<

6. Uma das principais estruturas de dados em Prolog sao as listas. Resolva as duas questoes abaixo
usando listas:

(a) (5 Pontos) Escreva um predicado maxList (L, M), que receba uma lista L de ndmeros e unifique
M com o maior nimero nesta lista. O predicado deve falhar se a lista estiver vazia.

(b) (5 Pontos) Escreva um predicado ordered (L), que seja verdadeiro se a lista L estiver em ordem
crescente.

