
Prova Final de Linguagens de Programação
- DCC024 -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Lembre-se do ganhador do Oscar de melhor filme em 2004. E lembre-se também: perguntando qual
foi o filme ganhador você perde a sua pergunta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1



1. A linguagem C é notória por apresentar problemas relacionados ao gerenciamento de memória. Qual
o problema com cada um dos programas abaixo?

(a) (3 pontos)

#include <stdio.h>

#include <stdlib.h>

void problem() {

int* i = (int*) malloc (sizeof(int));

*i = 3;

printf("%d\n", *i);

}

int main() {

problem();

}

(b) (3 pontos)

#include <stdio.h>

#include <stdlib.h>

void dangling() {

int* i = (int*) malloc (sizeof(int));

int* j;

*i = 3;

free(i);

j = (int*) malloc (sizeof(int));

*j = 8;

printf("%d\n", *i);

}

int main() {

dangling();

}

(c) (4 pontos)

#include <stdio.h>

unsigned* getMem() {

unsigned x[10];

int i;

for (i = 0; i < 10; i++) {

x[i] = i;

}

return x;

}

int main () {

unsigned *p1 = getMem();

unsigned *p2 = getMem();

printf("[%u] = %d; [%u] = %d\n", p1, *p1, p2, *p2);

printf("p2 = %u\n", p2[0]);

p1[0] = 2;

printf("p2 = %u\n", p2[0]);

}

2



2. As linguagens de programação usualmente fornecem aos desenvolvedores algum mecanismo para a
implementação de Tipos Abstratos de Dados, ou TADs. TADs são tipos de dados definidos não pelos
elementos em si, mas pelas propriedades que estes elementos possuem.

(a) (4 pontos) Existe um prinćıpio de programação que diz que tipos abstratos de dados deveriam ter
os detalhes de implementação encapsulados. Por que o encapsulamento é importante?

(b) (3 pontos) Um outro prinćıpio reza que tipos abstratos de dados deveriam ser extenśıveis, isto é,
idealmente o desenvolvedor deveria ser capaz de estender um TAD com novas propriedades. A
linguagem Python disponibiliza um mecanismo de extensão. Como se dá a extensão de TADs em
Python?

(c) (3 pontos) Complete a tabela abaixo com verdadeiro (V) e falso (F). Esta tabela distingue o
suporte que diferentes linguagens de programação dão ao desenvolvimento de TADs. Use V
quando a linguagem disponibilizar alguma sintaxe própria para o encapsulamento ou a extensão
de TADs, e F doutro modo.

Encapsulamento Extensão

C (F)

SML

Python (V)

Java

3



3. Esta questão refere-se à busca binária, um algoritmo de pesquisa baseada no prinćıpio da divisão e
conquista que possui complexidade O(ln n).

(a) (5 pontos) A função find abaixo, escrita em C, busca o elemento n em um arranjo de inteiros
l de tamanho s. Implemente este mesmo algoritmo em Python – lembre-se, a sintaxe correta é
importante. A função main é apenas um exemplo de uso, e você não precisa implementá-la.

int find(int* l, int s, int n) { int main() {

if (s) { int l[2] = {2, 3};

int left = 0; printf("T0: %d\n", find(l, 2, 2));

int right = s - 1; printf("T1: %d\n", find(l, 2, 3));

while (1) { printf("T2: %d\n", find(l, 2, 4));

int index = (left + right) / 2; printf("T3: %d\n", find(NULL, 0, 1));

if (l[index] == n) { }

return 1;

} else if (left >= right) {

return 0;

} else if (l[index] < n) {

left = index + 1;

} else {

right = index - 1;

}

}

}

return 0;

}

(b) (5 pontos) Explique, em alto ńıvel, como você faria para implementar um algoritmo similar em
SML. O seu algoritmo deve permitir que sejam encontrados inteiros em uma estrutura de pesquisa
em tempo logaŕıtmico.

4



4. Exceções são mecanismos que várias linguagens de programação provêem para o tratamento de erros.
Em Python, exceções são definidas como classes. Por exemplo, a classe ArithmeticException abaixo
representa um tipo de exceção particular:

class ArithmeticException(Exception):
def __init__(self, msg):
self.value = msg

def __str__(self):
return repr(self.value)

(a) (4 pontos) Implemente uma função div em Python, que receba dois números, n e d e retorne o
quociente n/d. A sua implementação deve disparar uma exceção do tipo ArithmeticException
com a mensagem ‘‘Denominador igual a zero.", caso o valor de d seja de fato zero.

(b) (6 pontos) Considere o programa abaixo, que testa a função div:

while True:
n = float(raw_input("Informe o dividendo: "))
d = float(raw_input("Informe o divisor: "))
if d == 0:
break

r = div(n, d)
print "Resultado = ", r

Este programa termina assim que o usuário informa um valor de d igual a zero. Modifique esta
implementação para tratar dois tipos de exceção:

• ValueError: se os caracteres fornecidos na entrada não definirem um número em formato
válido. Neste caso, simplesmente peça ao usuário que informe novos números.

• ArithmeticException: se o valor fornecido para d for zero. Neste caso, termine o loop.

5



5. Diga qual o resultado de cada uma das sentenças abaixo, escritas em Prolog. Os resultados posśıveis
são:

• sim – Neste caso a unificação é posśıvel. Você deve escrever qual o unificador mais geral que torna
a sentença verdadeira.

• n~ao – Neste caso não existe um unificador mais geral para a sentença.

• erro – Erros acontecem quando variáveis não foram suficientemente definidas.

(a) (1 Ponto) X = Y.

(b) (1 Ponto) (a, X, Y) = (X, Y, b).

(c) (1 Ponto) (a, X, X) = (Y, X, b).

(d) (1 Ponto) X = 1 + 2 + 3.

(e) (1 Ponto) X is 1 + 2 + 3.

(f) (1 Ponto) X =:= 1 + 2 + 3.

(g) (2 Pontos) E = [1, 2], E = [F|G].

(h) (2 Pontos) X = 2, Y = 1+1, X = Y.

6



6. Uma das principais estruturas de dados em Prolog são as listas. Resolva as duas questões abaixo
usando listas:

(a) (5 Pontos) Escreva um predicado maxList(L, M), que receba uma lista L de números e unifique
M com o maior número nesta lista. O predicado deve falhar se a lista estiver vazia.

(b) (5 Pontos) Escreva um predicado ordered(L), que seja verdadeiro se a lista L estiver em ordem
crescente.

7


