
Primeira Prova de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1

1. Existe um mecanismo de passagem de parâmetros chamado passagem por valor-resultado. De acordo
com esse mecanismo, os parâmetros reais são avaliados, e copiados para os parâmetros formais logo
que a função é chamada. Quando a função termina, os valores dos parâmetros formais são copiados de
volta para os parâmetros reais. A figura abaixo ilustra essa semântica:

void swap (val-res int a, val-res int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int x = 0; int y = 1;
swap(a = x, b = y)
• int tmp = a;
• a = b;
• b = tmp;
• x = a, y = b;
printf("%d, %d\n", a, b)

Quando a função swap é chamada,
os parâmetros reais são copiados
para os parâmetros formais.

Quando a função swap retorna, os
parâmetros formais são copiados
de volta para os parâmetros reais.

(a) (1 Ponto) O que será impresso pela chamada printf vista acima?

(b) (9 Pontos) Assuma que a linguagem C possua chamadas por valor-resultado, e por referência.
Parâmetros passados por valor-resultado devem ser prefixados com a palavra chave val-res.
Parâmetros passados por referência devem ser prefixados com a palavra chave ref, conforme
visto nos programas logo abaixo:

void max (int x, int y, val-res int r) {
 r = x;
 if (y > x) {
 r = y;
 }
}

void max (int x, int y, ref int r) {
 r = x;
 if (y > x) {
 r = y;
 }
}

Passagem por valor-resultado: Passagem por referência:

Do ponto de vista prático, existe alguma diferença semântica entre essas duas formas de passagem
de parâmetros? Em caso negativo, explique porque elas sempre geram resultados iguais. Em caso
positivo, demonstre a sua resposta com um trecho de código nessa linguagem C estendida. Escreva
a implementação de sua função, explique quais parâmetros são passados de quais formas, mostre
o código da chamada, e escreva o resultado esperado assumindo passagem por referência e por
valor-resultado.

2

2. Essa questão refere-se à função traverse abaixo, implementada em Python:

def traverse(v):
if len(v) >= 1:
print(v[0])

if len(v) > 1:
traverse(v[1])

(a) (2 Pontos) A função traverse possui cauda rasa ou não? Justifique a sua resposta.

(b) (4 Pontos) Considere as duas chamadas à função traverse feitas na figura abaixo. Em (a) a
função termina, e imprime “1”duas vezes. Em (b) a função não termina. Qual a diferença entre
as duas estruturas, a e b, que justifiquem esse comportamento?

>>> a = [1]
>>> a = [1, a]
>>> traverse(a)
1
1

>>> b = [1]
>>> b.append(b)
>>> traverse(b)
...

(a) (b)

(c) (2 Pontos) Considere um subconjunto de SML que possua somente tuplas, listas, tipos algébricos,
funções (mas não closures) e os cinco tipos primitivos: int, real, bool, char e string. Como
você poderia construir uma estrutura como aquela vista em 2.b(a)? Se tal não for posśıvel, você
deve justificar a sua resposta. Doutro modo, você deve escrever o código que constrói aquela
estrutura.

(d) (2 Pontos) Responda a mesma questão que 2.c, mas desta vez com relação à estrutura b, criada
com os comandos b = [1]; b.append(b).

3

3. (10 Pontos) Definimos uma árvore em Prolog via dois predicados. node(V, T1, T2) representa um
nodo da árvore que guarda o valor V, e possui sub-árvores T1 e T2. E leaf representa um nodo folha
da árvore. A t́ıtulo de exemplo, os predicados abaixo somam uma árvore de inteiros:

sum(node(V, T1, T2), VV) :- sum(T1, V1), sum(T2, V2), VV is V + V1 + V2.
sum(leaf, 0).

Nesta questão você deve criar um predicado search(T, L), que seja verdade quando existir um cami-
nho em T que seja equivalente à lista L. Por exemplo, esse predicado retorna seis respostas para a árvore
node(a, node(b, node(c, leaf, leaf), leaf), node(d, leaf, node(e, leaf, leaf))), conforme
pode ser visto na figura abaixo:

a

b d

c leaf leaf e

leaf leaf leaf leaf[a, b, c]

[a, b, c]

[a, b]

[a, d]

[a, d, c]

[a, d, c]

search(node(a, node(b, node(c,
leaf, leaf), leaf), node(d, leaf,
node(e, leaf, leaf))), L).

L = [a,b,c] ? ;

L = [a,b,c] ? ;

L = [a,b] ? ;

L = [a,d] ? ;

L = [a,d,e] ? ;

L = [a,d,e]

4

4. Esta questão refere-se ao algoritmo merge, escrito em Portugol logo abaixo:

merge (vetor de inteiros l1, vetor de inteiros l2)
 seja s1 o tamanho de l1 e seja s2 o tamanho de l2
 seja l um vetor vazio de tamanho s1 + s2
 seja i, i1 e i2 inteiros iguais a zero
 enquanto i for menor que a soma (s1 + s2) faça
 l[i] = l1[i1]
 i1 = i1 + 1
 i = i + 1
 l[i] = l2[i2]
 i2 = i2 + 1

(a) (3 Pontos) Escreva esse algoritmo em SML. Perceba que SML – a parte vista em aula – não
possui estruturas de acesso aleatório. Assim, você terá de implementar um algoritmo que tenha
propósito semelhante à merge, mas que use listas.

(b) (3 Pontos) Implemente o mesmo algoritmo merge, mas desta vez em Prolog. Assim como na
questão anterior, use listas para representar vetores.

(c) (4 Pontos) Agora, implemente aquele algoritmo em Python.

5

5. Essa questão refere-se ao programa abaixo, que foi implementado na linguagem de programação C++:

int foo(int n) {
 if (n < 2) {
 return 1;
 } else {
 const int x = n - 1;
 printf("Endereco = %u\n", &x);
 return n * foo(x);
 }
}

1

2

3

4

5

6

7

8

9

10

12

13

int main() {
 foo(3);
}

(a) (3 Pontos) O endereço que é impresso na linha 6 é sempre o mesmo em cada uma das duas
chamadas de foo que ocorrerão nesse programa? Fundamente sua resposta com base na área de
alocação: estática, pilha ou heap usada para armazenar a variável x.

(b) (2 Pontos) caso substitúıssemos a linha 6 pelo comando x = x - 1 o programa não estaria correto,
pois estaŕıamos tentando atualizar uma constante. Quem faz a verificação ou prevenção desse erro?
O compilador, o sistema operacional ou a arquitetura?

(c) (3 Pontos) Explique como o ator escolhido acima (compilador, sistema operacional ou arquitetura)
impede que constantes sejam sobre-escritas em C++.

(d) (2 Pontos) Reescreva a função foo para que ela passe a ser uma função de cauda rasa.

6

6. Duas das mais antigas linguagens de programação ainda em uso hoje são Fortran e Lisp. Fortran
apresenta um modelo de programação mais imperativo, enquanto Lisp tende ao lado mais declarativo
dessa taxonomia. Hoje, a maior parte das linguagens de programação em largo uso são mais parecidas
com Fortran que Lisp. Enquanto linguagens imperativas, elas permitem que programas sejam descritos
como algoritmos. Algoritmos são sequências de passos que descrevem como o estado do computador
deve ser alterado. Embora as linguagens declarativas nunca tenham alcançado a popularidade de suas
irmãs imperativas, hoje podemos observar que várias linguagens de programação modernas herdaram
algumas de suas caracteŕısticas. Nesta questão revisaremos algumas dessas caracteŕısticas.

(a) (3 Pontos) Escreva um trecho de código em Java, que use algum conceito de linguagem de pro-
gramação introduzido por alguma linguagem funcional.

(b) (3 Pontos) Agora, escolha uma funcionalidade de Python que foi introduzida por Lisp, e ilustre-a
com um trecho de código.

(c) (2 Pontos) Escolha agora, uma segunda inovação de Lisp, diferente daquela escolhida na questão
6.b, e indique três linguagens diferentes que a usem. Note que a propriedade ou capacidade de
Lisp escolhida nesta questão não pode estar presente em Fortran.

(d) (2 Pontos) Finalmente, aponte uma terceira capacidade de Lisp (diferente daquelas vistas em
6.b e 6.c), também não presente em Fortran, que seja amplamente encontrada em linguagens de
programação modernas. Indique três linguagens que façam uso desta caracteŕıstica de Lisp.

7

