Primeira Prova de Linguagens de Programacao
- DCC024B -
Ciéncia da Computacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:
e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.

Quando escrever cédigo, a sintaxe correta é importante.

Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.
e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e A prova nao ¢ dificil, ela é divertida, entdo aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questdao 1 | Questao 2 | Questao 3 | Questdao 4 | Questao 5 | Questao 6

1. Existe um mecanismo de passagem de parametros chamado passagem por valor-resultado. De acordo
com esse mecanismo, os parametros reais sao avaliados, e copiados para os parametros formais logo
que a fungao é chamada. Quando a fungao termina, os valores dos pardmetros formais sao copiados de
volta para os parametros reais. A figura abaixo ilustra essa seméantica:

void swap (val-res int a, val-res int b) { intx=0;inty=1; Quando a fungdo swap ¢é chamada,
int tmp = a; swap(@a=x,b=y) 0s pardmetros reais sdo copiados
a=b; * inttmp =a; para os pardmetros formais.
b = tmp; e a=b;
} * b=tmp; Quando a fungdo swap retorna, os
e X=a,y=b; parametros formais sdo copiados
printf("%d, %d\n", a, b) de volta para os parametros reais.

(a) (1 Ponto) O que sera impresso pela chamada printf vista acima?

(b) (9 Pontos) Assuma que a linguagem C possua chamadas por valor-resultado, e por referéncia.
Parametros passados por valor-resultado devem ser prefixados com a palavra chave val-res.
Parametros passados por referéncia devem ser prefixados com a palavra chave ref, conforme
visto nos programas logo abaixo:

Passagem por valor-resultado: Passagem por referéncia:
void max (int x, int'y, val-res intr) { void max (int x, inty, refintr) {
r=x; r=x;
if (y > x) { if (y > x) {
r=y; r=y;
} }
} }

Do ponto de vista pratico, existe alguma diferenga semantica entre essas duas formas de passagem
de parametros? Em caso negativo, explique porque elas sempre geram resultados iguais. Em caso
positivo, demonstre a sua resposta com um trecho de c6digo nessa linguagem C estendida. Escreva
a implementagao de sua fungao, explique quais parametros sao passados de quais formas, mostre
o cbdigo da chamada, e escreva o resultado esperado assumindo passagem por referéncia e por
valor-resultado.

2. Essa questao refere-se a fungao traverse abaixo, implementada em Python:

def traverse(v):
if len(v) >= 1:

print (v[0])

if len(v) > 1:
traverse(v[1])

(a) (2 Pontos) A funcao traverse possui cauda rasa ou nao? Justifique a sua resposta.

(b) (4 Pontos) Considere as duas chamadas & fun¢do traverse feitas na figura abaixo. Em (a) a
fungao termina, e imprime “1”duas vezes. Em (b) a funcdo nao termina. Qual a diferenca entre
as duas estruturas, a e b, que justifiquem esse comportamento?

(a) >>> a = [1] (b) >>> b = [1]
>>> a = [1, a] >>> b.append(b)
>>> traverse(a) >>> traverse(b)
1 .

1

(¢) (2 Pontos) Considere um subconjunto de SML que possua somente tuplas, listas, tipos algébricos,
fungoes (mas nao closures) e os cinco tipos primitivos: int, real, bool, char e string. Como
vocé poderia construir uma estrutura como aquela vista em 2.b(a)? Se tal ndo for possivel, vocé

deve justificar a sua resposta. Doutro modo, vocé deve escrever o cédigo que constréi aquela
estrutura.

(d) (2 Pontos) Responda a mesma questdo que 2.c, mas desta vez com relagdo & estrutura b, criada
com os comandos b = [1]; b.append(b).

3. (10 Pontos) Definimos uma arvore em Prolog via dois predicados. node(V, T1, T2) representa um
nodo da arvore que guarda o valor V, e possui sub-drvores T1 e T2. E leaf representa um nodo folha
da drvore. A titulo de exemplo, os predicados abaixo somam uma arvore de inteiros:

sum(node(V, T1, T2), VV) :- sum(T1, V1), sum(T2, V2), VV is V + V1 + V2.
sum(leaf, 0).

Nesta questao vocé deve criar um predicado search(T, L), que seja verdade quando existir um cami-
nho em T que seja equivalente a lista L. Por exemplo, esse predicado retorna seis respostas para a arvore
node(a, node(b, node(c, leaf, leaf), leaf), node(d, leaf, node(e, leaf, leaf))), conforme
pode ser visto na figura abaixo:

search(node(a, node(b, node(c,
leaf, leaf), leaf), node(d, leaf,
node(e, leaf, leaf))), L).
b
/ \ = [a,b,c] ? ;
c leaf

Ny
e

[a,b,c] ? ;

leaf e
' ™ L = [a,b] ? ;
= B
leaf leaf leaf leaf L =1[ad] ?;
» K o o L = [a,d,e] ? ;
s s & s~
L2, 2, 2 & L = [a,d,e]

4. Esta questao refere-se ao algoritmo merge, escrito em Portugol logo abaixo:

merge (vetor de inteiros ¢, vetor de inteiros ¢,)
seja s, o tamanho de ¢, e seja s, o tamanho de ¢,
seja ¢ um vetor vazio de tamanho s, +s,
seja i, i, e i, inteiros iguais a zero
enquanto i for menor que a soma (s, +s,) faga

qi] = ¢[i)]

ip=1,+1
i=i+1

dqi] = 6[iy]
=i, +1

(a) (3 Pontos) Escreva esse algoritmo em SML. Perceba que SML — a parte vista em aula — nao
possui estruturas de acesso aleatério. Assim, vocé terda de implementar um algoritmo que tenha
propésito semelhante a merge, mas que use listas.

(b) (3 Pontos) Implemente o mesmo algoritmo merge, mas desta vez em Prolog. Assim como na
questao anterior, use listas para representar vetores.

(¢) (4 Pontos) Agora, implemente aquele algoritmo em Python.

5. Essa questao refere-se ao programa abaixo, que foi implementado na linguagem de programagao C++:

1 int foo(int n) { 10 int main() {
2 if (n < 2) { 12 foo(3);

3 return 1; 13}

4 } else {

5 const int Xx = n - 1;

6 printf("Endereco = %u\n", &x);

7 return n * foo(x);

8}

9}

(a) (3 Pontos) O enderego que é impresso na linha 6 é sempre o mesmo em cada uma das duas
chamadas de foo que ocorrerao nesse programa? Fundamente sua resposta com base na area de
alocagao: estatica, pilha ou heap usada para armazenar a variavel x.

(b) (2 Pontos) caso substituissemos a linha 6 pelo comando x = x - 1 o programa nao estaria correto,
pois estarfamos tentando atualizar uma constante. Quem faz a verificagdo ou prevengao desse erro?
O compilador, o sistema operacional ou a arquitetura?

(¢) (3 Pontos) Explique como o ator escolhido acima (compilador, sistema operacional ou arquitetura)
impede que constantes sejam sobre-escritas em C++.

(d) (2 Pontos) Reescreva a fun¢ao foo para que ela passe a ser uma funcao de cauda rasa.

6. Duas das mais antigas linguagens de programacao ainda em uso hoje sao Fortran e Lisp. Fortran
apresenta um modelo de programacao mais imperativo, enquanto Lisp tende ao lado mais declarativo
dessa taxonomia. Hoje, a maior parte das linguagens de programacao em largo uso sao mais parecidas
com Fortran que Lisp. Enquanto linguagens imperativas, elas permitem que programas sejam descritos
como algoritmos. Algoritmos sdo sequéncias de passos que descrevem como o estado do computador
deve ser alterado. Embora as linguagens declarativas nunca tenham alcancado a popularidade de suas
irmas imperativas, hoje podemos observar que varias linguagens de programagao modernas herdaram
algumas de suas caracteristicas. Nesta questao revisaremos algumas dessas caracteristicas.

(a) (3 Pontos) Escreva um trecho de c6digo em Java, que use algum conceito de linguagem de pro-
gramagao introduzido por alguma linguagem funcional.

(b) (3 Pontos) Agora, escolha uma funcionalidade de Python que foi introduzida por Lisp, e ilustre-a
com um trecho de cédigo.

(¢) (2 Pontos) Escolha agora, uma segunda inovagao de Lisp, diferente daquela escolhida na questao
6.b, e indique trés linguagens diferentes que a usem. Note que a propriedade ou capacidade de
Lisp escolhida nesta questao nao pode estar presente em Fortran.

(d) (2 Pontos) Finalmente, aponte uma terceira capacidade de Lisp (diferente daquelas vistas em
6.b e 6.c), também ndo presente em Fortran, que seja amplamente encontrada em linguagens de
programacao modernas. Indique trés linguagens que fagam uso desta caracteristica de Lisp.

