
Prova Final de Linguagens de Programação
- DCC024W -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapaceei, estou trapaceando, ou trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio. O instrutor avisará quando faltarem
somente 15 minutos para o final do exame.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Lembre-se da cor dos domingos. E lembre-se também: perguntando qual é a cor dos domingos você
perde a sua pergunta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1



1. Essa questão refere-se ao programa abaixo, escrito na linguagem de programação Python:

def foo(l, e):
glVar = 0
for x in l:
if x == e:

break
else:
glVar = 1

print glVar

foo([2, 3, 5, 7], 3)
foo([2, 3, 5, 7], 4)

(a) (1 ponto) o que será impresso pelo programa acima?

(b) (9 pontos) Escreva uma função foo, na linguagem C, que seja equivalente ao programa Python
visto acima. A sua função deverá ler um arranjo l, o seu tamanho N e um inteiro e. Use a guia
logo abaixo:

#include <stdio.h>

void foo(int* l, int N, int e) {
int glVar = 0;

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
printf("%d\n", glVar);

}

void main() {
int a1[] = {2, 3, 5, 7};
foo(a1, 4, 3);
foo(a1, 4, 4);

}

2



2. Programadores cometem vários tipos de erros enquanto desenvolvem software. Alguns desses erros são
descobertos em tempo de compilação. Outros são descobertos em tempo de execução. Finalmente,
alguns erros nunca são descobertos, e o programa, tendo executado, pode ficar em um estado indefinido.

(a) (2 Pontos) Escreva um programa, em C, que seja sintaticamente correto, mas que não seria
compilado devido a algum erro de natureza estática.

(b) (4 pontos) Escreva um programa em alguma linguagem de sua escolha, que é corretamente com-
pilado, mas que gera um erro em tempo de execução.

(c) (4 pontos) Escreva um programa em alguma linguagem de sua escolha, que é corretamente com-
pilado e executa até terminar, mas que termina em um estado indefinido devido a um erro em
tempo de execução. Note que esse tipo de comportamento somente é posśıvel em linguagens
fracamente tipadas.

3



3. Algumas linguagens de programação provêem o programador com uma facilidade chamada reflexão
estática. Linguagens que possuem esse tipo de reflexão permitem que o tipo dos dados seja conhecido
em tempo de execução. Python é uma dessas linguagens, conforme mostra o programa abaixo:

>>> class A:
... def __init__(self, e):
... self.e = e
...
>>> a = A(42)
>>> isinstance(a, A)
True
>>> isinstance(a, list)
False

(a) (2 Pontos) A linguagem C apresenta ou não esse tipo de reflexão?

(b) (8 Pontos) Se a sua resposta para a questão anterior houver sido afirmativa, complete o trecho
de código abaixo, mostrando como imprimir o tipo do registro struct bar. Caso a sua resposta
seja negativa, explique porque não é posśıvel saber o tipo de struct bar em tempo de execução.

struct bar {
int e;

};

int main() {
struct bar a;
a.e = 42;

?
?
?
?
?
?
?
?
?
return 0;

}

4



4. Nessa questão você irá escrever, na linguagem Python, a função rev, que inverte uma lista, de duas
formas diferentes.

(a) (5 Pontos) Escreva uma função imperative rev(l), que receba uma lista l e a inverta in-place,
isto é, sem a necessidade de replicar a lista. A sua função deve ter complexidade linear em tempo,
e deve criar uma quantidade constante de dados auxiliares, caso esses sejam necessários. Um
exemplo de execução é dado logo abaixo:

>>> def imperative_rev(l):
... # essa funcao precisa
... # ser implementada
...
>>> l = [2,3,5,7]
>>> imperative_rev(l)
>>> l
[7, 5, 3, 2]

(b) (5 Pontos) Escreva uma função functional rev(l, acc) que produza uma lista l′ que é o inverso
da lista de entrada l. A sua função não pode alterar a lista de entrada. Além disso, a sua função
deve ter uma implementação de cauda rasa. Em outras palavras, ela precisa ser implementada
de forma tal que a última ação que ela tome seja chamar-se recursivamente. Um exemplo de
execução é dado logo abaixo:

>>> def functional_rev(l):
... # essa funcao precisa
... # ser implementada
...
>>> l = [2,3,5,7]
>>> l = functional_rev(l)
>>> l
[7, 5, 3, 2]

5



5. (Um ponto por cada item correto) A linguagem Algol foi uma das linguagens de programação que
mais influenciou o projeto de outras linguagens. Assim, várias das caracteŕısticas de Algol são hoje
encontradas em linguagens modernas. Para cada uma das caracteŕısticas de Algol listadas abaixo,
escreva ao seu lado uma linguagem de programação que apresente a mesma caracteŕıstica. Você pode
reutilizar a mesma linguagem no máximo três vezes.

(a) Blocos delimitadores:

(b) Estrutura léxica de formato livre:

(c) Escopo estático:

(d) Tipagem estática com anotações de tipo:

(e) if-then-else’s aninhados:

(f) Passagem de parâmetros por valor:

(g) Expressões condicionais:

(h) Procedimentos de primeira classe:

(i) Operadores definidos pelo usuário:

(j) Passagem de parâmetros por nome:

6



6. Uma clique é um grafo completo. O problema de decidir se um grafo G possui uma clique de tamanho
N é um problema NP-completo bem conhecido. Esse problema, inclusive, é parte da lista de 21
problemas proposta por Richard Karp em 1972. Embora não conheçamos qualquer algoritmo eficiente
para encontrar cliques em grafos, é muito fácil resolver esse problema por força bruta em Prolog. Nesse
caso, podemos representar um grafo como um conjunto de arestas, conforme feito na figura abaixo:

edge(a, b).
edge(a, c).
edge(b, c).
edge(a, d).
edge(b, e).
edge(d, e).
edge(a, e).

a b

c

d e Cliques:

a, b, c

a, b, e

a, e, d

O predicado cliqueN, definido abaixo, é verdade quando G é uma lista de vértices de um grafo, N é um
número inteiro, e L é uma sublista de G que forma uma clique:

cliqueN(N, G, L) :- sublist(G, L), length(L, N), clique(L).

Por exemplo:

?- cliqueN(3, [a, b, c, d, e], L).
L = [a, b, c] ;
L = [a, b, e] ;
L = [a, d, e] ;
false.

(a) (4 Pontos) Defina o predicado sublist(G, L), que seja verdade quando L for uma sublista de G.

(b) (6 Pontos) Defina o predicado clique(L), que seja verdade quando L for uma lista de vértices
que forme um grafo completo.

7


