Prova Final de Linguagens de Programacao
- DCC024W -
Sistemas de Informacao

Nome:
“Eu dou minha palavra de honra que nao trapaceei, estou trapaceando, ou trapacearei neste exame.”

Numero de matricula:

As regras do jogo:
e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.

Quando escrever cédigo, a sintaxe correta é importante.

Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

A prova termina uma hora e quarenta minutos apds seu inicio. O instrutor avisara quando faltarem
somente 15 minutos para o final do exame.

e Seja honesto e lembre-se: vocé deu sua palavra de honra.
Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretagao da questao junto
a resposta.

e Lembre-se da cor dos domingos. E lembre-se também: perguntando qual é a cor dos domingos vocé
perde a sua pergunta.

e A prova nao é dificil, ela é divertida, entao aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Questao 4 | Questao 5 | Questao 6

1. Essa questao refere-se ao programa abaixo, escrito na linguagem de programagcao Python:

def foo(l, e):
glVar = 0
for x in 1:

if x ==
break
else:
glVar = 1
print glVar

foo([2, 3, 5, 71, 3)
foo([2, 3, 5, 71, 4)

(a) (1 ponto) o que serd impresso pelo programa acima?

(b) (9 pontos) Escreva uma fungio foo, na linguagem C, que seja equivalente ao programa Python
visto acima. A sua func@o deverd ler um arranjo 1, o seu tamanho N e um inteiro e. Use a guia
logo abaixo:

#include <stdio.h>

void foo(int* 1, int N, int e) {
int glVar = 0;

NN N N N N N N N N N)) N oY)) oY)))

printf ("%d\n", glVar);
¥

void main() {
int al[l = {2, 3, 5, 7};
foo(al, 4, 3);
foo(al, 4, 4);

}

2. Programadores cometem vérios tipos de erros enquanto desenvolvem software. Alguns desses erros sao
descobertos em tempo de compilagao. Outros sao descobertos em tempo de execucgao. Finalmente,
alguns erros nunca sao descobertos, e o programa, tendo executado, pode ficar em um estado indefinido.

(a) (2 Pontos) Escreva um programa, em C, que seja sintaticamente correto, mas que nao seria
compilado devido a algum erro de natureza estatica.

(b) (4 pontos) Escreva um programa em alguma linguagem de sua escolha, que é corretamente com-
pilado, mas que gera um erro em tempo de execugao.

(¢) (4 pontos) Escreva um programa em alguma linguagem de sua escolha, que é corretamente com-
pilado e executa até terminar, mas que termina em um estado indefinido devido a um erro em
tempo de execugdao. Note que esse tipo de comportamento somente é possivel em linguagens
fracamente tipadas.

3. Algumas linguagens de programacao provéem o programador com uma facilidade chamada reflexdao
estdtica. Linguagens que possuem esse tipo de reflexao permitem que o tipo dos dados seja conhecido
em tempo de execucao. Python é uma dessas linguagens, conforme mostra o programa abaixo:

>>> class A:
def init__(self, e):

self.e = e

>>> a = A(42)

>>> isinstance(a, A)
True

>>> isinstance(a, list)
False

(a) (2 Pontos) A linguagem C apresenta ou ndo esse tipo de reflexao?

(b) (8 Pontos) Se a sua resposta para a questdo anterior houver sido afirmativa, complete o trecho
de cédigo abaixo, mostrando como imprimir o tipo do registro struct bar. Caso a sua resposta
seja negativa, explique porque nao é possivel saber o tipo de struct bar em tempo de execugao.

struct bar {
int e;

};

int main() {
struct bar a;
a.e = 42;

NN N N N N N N N

return O;

4. Nessa questao vocé ird escrever, na linguagem Python, a funcao rev, que inverte uma lista, de duas
formas diferentes.

(a) (5 Pontos) Escreva uma fungéo imperative_rev(1l), que receba uma lista 1 e a inverta in-place,

isto é, sem a necessidade de replicar a lista. A sua funcao deve ter complexidade linear em tempo,
e deve criar uma quantidade constante de dados auxiliares, caso esses sejam necessarios. Um
exemplo de execucgao é dado logo abaixo:

>>> def imperative_rev(l):
. # essa funcao precisa
. # ser implementada

>>> 1 = [2,3,5,7]

>>> imperative_rev(1l)
>>> 1

7, 5, 3, 2]

(5 Pontos) Escreva uma fungéo functional rev(l, acc) que produza uma lista I’ que é o inverso
da lista de entrada 1. A sua fung@o ndo pode alterar a lista de entrada. Além disso, a sua funcao
deve ter uma implementacao de cauda rasa. Em outras palavras, ela precisa ser implementada
de forma tal que a ultima acao que ela tome seja chamar-se recursivamente. Um exemplo de
execucao é dado logo abaixo:

>>> def functional_rev(l):
. # essa funcao precisa
. # ser implementada

>>>

1 [2,3,5,7]
>>> 1 = functional_rev(l)
>>> 1
[7, 5, 3, 2]

5. (Um ponto por cada item correto) A linguagem Algol foi uma das linguagens de programagao que
mais influenciou o projeto de outras linguagens. Assim, varias das caracteristicas de Algol sao hoje
encontradas em linguagens modernas. Para cada uma das caracteristicas de Algol listadas abaixo,
escreva ao seu lado uma linguagem de programacao que apresente a mesma caracteristica. Vocé pode
reutilizar a mesma linguagem no maximo trés vezes.

(a) Blocos delimitadores:

(b) Estrutura léxica de formato livre:

(¢) Escopo estético:

(d) Tipagem estdtica com anotagdes de tipo:

(e) if-then-else’s aninhados:

(f) Passagem de parametros por valor:

(g) Expressoes condicionais:

(h) Procedimentos de primeira classe:

(i) Operadores definidos pelo usudrio:

(j) Passagem de pardmetros por nome:

6. Uma clique é um grafo completo. O problema de decidir se um grafo G possui uma clique de tamanho
N é um problema NP-completo bem conhecido. Esse problema, inclusive, é parte da lista de 21
problemas proposta por Richard Karp em 1972. Embora nao conhegamos qualquer algoritmo eficiente
para encontrar cliques em grafos, é muito facil resolver esse problema por forga bruta em Prolog. Nesse
caso, podemos representar um grafo como um conjunto de arestas, conforme feito na figura abaixo:

edge (a, b). d — e Cliques:
edge(a, c).

edge (b, c). \ \ a, b, c
edge (a, d). a —Db a, b, e
edge (b, e). /

edge (d, e). a, e d
edge(a, e). c

O predicado cliqueN, definido abaixo, é verdade quando G é uma lista de vértices de um grafo, N é um
numero inteiro, e L é uma sublista de G que forma uma clique:

cliqueN(N, G, L) :- sublist(G, L), length(L, N), clique(L).
Por exemplo:

?- cliqueN(3, [a, b, ¢, d, e], L).
L =[a, b, c] ;

L=1[a, b, el ;
L=1[a, d, e] ;
false.

(a) (4 Pontos) Defina o predicado sublist (G, L), que seja verdade quando L for uma sublista de G.

(b) (6 Pontos) Defina o predicado clique(L), que seja verdade quando L for uma lista de vértices
que forme um grafo completo.

