
Prova Final de Linguagens de Programação
- DCC024W -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• O vasto esforço despendido para tornar essa prova dif́ıcil mostrou-se infrut́ıfero, então aproveite, pois
ela está divertida!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1

1. Essa questão refere-se à alocação de arranjos nas linguagens C e Java.

(a) (3 pontos) A linguagem C, bem como várias outras linguagens de programação imperativas, possui
arranjos cujo tempo de acesso é aleatório. O acesso direto a um elemento a[i][j] em um arranjo
bidimensional em C é posśıvel porque o compilador transforma tal acesso em um único acesso à
memória. Qual é a fórmula que o compilador usa para fazer uma referência direta ao elemento
a[i][j], sabendo que o arranjo foi declarado como int a[M][N]? Escreva essa fórmula em função
das variáves M, N, i e j. Algumas dessas variáveis podem não fazer parte da expressão final.

(b) (4 pontos) A função printRowMajor, à direita, é um pouco mais eficiente que a função printColumnMajor,
à esquerda. É posśıvel que implementássemos um compilador de C em que a função printColumnMajor
fosse mais eficiente. O que esse compilador teria de fazer?

void printRowMajor() { int printColumnMajor() {
int[M][N] a; int[M][N] a;
int i, j; int i, j;
for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) {
for (int j = 0; j < 3; j++) { for (int i = 0; i < 3; i++) {
printf("%d ", a[i][j]); printf("%d ", a[i][j]);

} }
} }

} }

(c) (3 pontos) Arranjos em Java não são alocados exatamente como em C. Elementos em uma linha
(em uma mesma dimensão) são alocados contiguamente, mas linhas separadas não ficam em
posições cont́ıguas de memória:

void foo() {
 int[][] a;
 a = new int[4][];
 a[0] = new int[3];
 a[1] = new int[1];
 a[2] = new int[2];
 a[3] = new int[4];
}

Dada essa forma de alocação de dados, quantos acessos à memória são necessários para que possamos
ler o elemento a[i][j] em um arranjo de Java? Justifique a sua resposta.

2

2. Essa questão refere-se aos diferentes espaços de alocação de dados que são criados pelo compilador, para
garantir que as variáveis de um programa possam ser devidamente armazenadas durante a execução
do programa.

(a) (2 pontos) Escreva um programa em C que possua algum dado alocado em memória estática.
Explique qual dado é esse.

(b) (3 pontos) Escreva um programa em Python que possua algum dado alocado no heap. Explique
qual dado é esse.

(c) (3 pontos) Escreva um programa em SML que possua algum dado alocado na pilha. Explique
qual dado é esse.

(d) (2 pontos) Historicamente, qual desses mecanismos de alocação de dados – memória estática, heap
e pilha – surgiu primeiro? Justifique a sua resposta informando uma linguagem que já possuia o
mecanismo escolhido, antes das duas outras formas se tornarem também populares.

3

3. Essa questão refere-se ao bloco de código abaixo, escrito na linguagem de programação Python. Você
deverá escrever suas respostas, nas questões (a) e (b), dentro da área delimitada. Você não pode
escrever código que veja a ser executado antes ou depois dessas áreas:

class Rectangle:
 def __init__(self, cor, x, y, largura, altura):
 self.cor = cor
 self.x = x
 self.y = y
 self.largura = largura
 self.altura = altura

def contaCores(recLista, cor):
 sum = 0
 for rec in recLista:
 if rec.cor == cor:
 sum += 1
 return sum

recLista = [
 Rectangle("blue", 10, 20, 10, 20),
 Rectangle("yellow", 10, 20, 2, 5),
 Rectangle("blue", 10, 20, 10, 20)
]
print contaCores(recLista, "blue")

def getArea(rect):
 return rect.largura * rect.altura

Rectangle.getArea = getArea

def hasLargeArea(rect, limiar):
 if rect.getArea() > limiar:
 return True
 else:
 return False;

def secret(listRect, limiar):
 return [rec for rec in listRect if hasLargeArea(rec, limiar)]

(4 pontos) Implemente o corpo do
método contaCores, que recebe
uma lista de retângulos, e retorna
um inteiro informando quantos
retângulos possuem a cor escolhida.

(3 pontos) Escreva código neste espaço,
de modo que a implementação do
método hasLargeArea funcione
corretamente. Para isso, a classe
Rectangle deve respeitar o contrato
imposto por hasLargeArea.

(3 pontos) Explique o que faz o método secret. Comece descrevendo quais são os tipos
das variáveis de entrada, listRect e limiar e o tipo do valor retornado pelo método.

(a)

(b)

(c)

4

4. (10 Pontos) Considere o seguinte jogo: tem-se um tabuleiro de N ×N casas, e deseja-se dispor N cores
nesse tabuleiro N vezes, de modo que cada linha e cada coluna possuam somente cores diferentes. O
predicado abaixo, escrito em Prolog, resolve esse problema para um tabuleiro 2 × 2, considerando-se
as cores verde e azul:

legal([]).
legal([(X, Y, C) | Rest]) :-
legal(Rest),
member(X, [1, 2]),
member(Y, [1, 2]),
member(C, [azul, verde]),
nocheck((X, Y, C), Rest).

Abaixo vê-se uma posśıvel execução do predicado legal:

?- L = [(1, _, verde), (2, _, verde), (1, _, azul), (2, _, azul)], legal(L).
L = [(1, 1, verde), (2, 2, verde), (1, 2, azul), (2, 1, azul)] ;
L = [(1, 2, verde), (2, 1, verde), (1, 1, azul), (2, 2, azul)] ;
false.

O predicado legal utiliza um predicado auxiliar, nocheck. Temos que nocheck((X, Y, C), Rest) é
verdade quando a cor C, colocada no quadrado (X, Y), não conflita com qualquer outra cor colocada na
linha X ou na coluna Y que por ventura estejam representadas na lista Rest. Nesta questão, implemente
esse predicado, tendo em vista as seguintes observações:

• Duas cores iguais precisam estar em linhas e colunas diferentes.

• Duas cores diferentes não podem estar na mesma linha e coluna.

5

5. Uma linguagem de programação é dita estrita se os parâmetros passados para as funções sempre são
avaliados antes dessas funções serem chamadas. Por exemplo, SML é uma linguagem estrita. Isso quer
dizer que as expressões 1 + 2 e x * 4, no programa abaixo, serão avaliadas antes da função foo ser
chamada.

- fun foo(x, y) = if x > y then x else y;
- val x = ~1;
- foo(1 + 2, x * 4);
val it = 3 : int

(a) (1 Pontos) A passagem de parâmetros por expansão de macros é um mecanismos estrito ou não?

(b) (4 Pontos) Justifique a sua resposta para o item (a) acima, mediante um exemplo, escrito na
linguagem de programação C. Explique porque o seu exemplo é uma justificativa válida.

(c) (4 Pontos) Mostre, via um programa escrito em Python, que essa linguagem de programação é
estrita. Explique o comportamento esperado para esse programa.

(d) (1 Pontos) Existe alguma linguagem de programação cuja avaliação de parâmetros passados para
funções é exclusivamente não estrita?

6

6. Essa questão busca relembrar conceitos relacionados à linguagem de programação SML.

(a) (2 pontos) Aponte uma semelhança entre as linguagens de programação Python e SML.

(b) (2 pontos) Aponte uma semelhança entre as linguagens de programação SML e Python. A res-
ponsta desse item deve ser diferente da resposta dada no item anterior.

(c) (6 pontos) Escreva uma função cycle, em SML, de tipo ’a list * int -> ’a list que receba
uma lista e um número inteiro e retorne a mesma lista, mas com os n primeiros elementos movidos
para o final da lista. Por exemplo,cycle ([1, 2, 3, 4, 5, 6], 2) deve retornar [3, 4, 5,
6, 1, 2].

7

