
Prova Final de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Extra 0.5

Questão extra (0.5): cite alguma descoberta cient́ıfica que é creditada a Galileu Galilei.

1

1. Para cada um dos itens abaixo, responda se a informação pertinente àquele item é encontrada em
tempo de compilação ou em tempo de execução. Cada item vale dois pontos.

(a) O tipo da variável i, na linha 2 do programa abaixo, escrito em C:

1: int i = 3;

2: float f = 0.1416F + i;

(b) O valor de x, no programa abaixo, escrito em C:

int* p = (int*) malloc(read() * sizeof(int));

int x = sizeof(p);

(c) A implementação do método eat() no programa abaixo, escrito em Java:

Animal a = read() ? new Animal() : new Abelha();

a.eat();

(d) O tipo da função makeFirst, no programa abaixo, implementado em SML:

fun first (a, _) = a;

val x = true ;

fun makeFirst t = if x then 1 + first t else 1 - first t

(e) A quantidade de métodos que podem ser invocados a partir do objeto a, no programa abaixo,
escrito em Java:

Animal a = new Animal();

if (read() == ’\0’) {

a = new Abelha();

}

2

2. Esta questão refere-se ao programa abaixo:

int main() {

int x = 1;

int y = 2;

int z = 3;

int a = x << y << z;

int a1 = ((x << y) << z);

int a2 = (x << (y << z));

int a3 = 1 << 2 << 3;

int* p = &x;

*p = 2;

printf("%d\n", x);

printf("%d, %d, %d, %d\n", a, a1, a2, a3);

}

(a) (4 Pontos) O programa acima imprime o seguinte resultado:

2

32, 32, 65536, 32

Dados esses resultados, qual é a associatividade da operação de arredamento para a esquerda?

(b) (4 Pontos) Que resultado seria impresso se a associatividade da operação de arredamento para a
esquerda fosse invertida?

(c) (2 Pontos) Cite um operador de SML que possui associatividade contrária àquela respondida no
item (a) desta questão.

3

3. Nesta questão você deverá implementar uma função removeDups em Python. Essa função recebe uma
lista L, e remove de L todas as cópias de elementos duplicados. Por exemplo:

>>> L = []

>>> removeDups(L) ; L

[]

>>> L = [1, 1, 1, 1, 1]

>>> removeDups(L) ; L

[1]

>>> L = [2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1]

>>> removeDups(L) ; L

[2, 1]

(a) (3 Pontos) Implemente a função removeDups

usando o espaço ao lado.

(b) (1 Pontos) Que sintaxe você usou para remover elementos de uma lista?

(c) (1 Ponto) você removeu elementos da lista enquanto estava iterando por ela?

(d) (3 Pontos) Qual é a complexidade asimptótica do código que você implementou na questão (a)?

(e) (2 Pontos) Seria posśıvel reduzir essa complexidade? Explique como você faria isso (não é ne-
cessário código), ou exponha um argumento que mostre que tal não é posśıvel.

4

4. Esta questão refere-se aos predicados abaixo, que implementam um grafo:

edge(a, b, 3).

edge(a, c, 5).

edge(b, c, 2).

edge(c, a, 8).

edge(c, d, 6).

edge(d, e, 5).

(a) (3 Pontos) Escreva um predicado fourPath([A, B, C, D]) que seja verdadeiro se houver um
caminho no grafo formado pelos nós A, B, C e D. Por exemplo, para o grafo acima, obteŕıamos:

?- fourPath(L).

L = [a, b, c, a] ;

L = [a, b, c, d] ;

L = [a, c, a, b] ;

L = [a, c, a, c] ;

L = [a, c, d, e] ;

L = [b, c, a, b] ;

L = [b, c, a, c] ;

L = [b, c, d, e] ;

L = [c, a, b, c] ;

L = [c, a, c, a] ;

L = [c, a, c, d] ;

(b) (3 Pontos) Escreva um predicado countFourPath(N), que seja verdade quando N for o número
de caminhos de quatro nós no grafo formado pelos predicados edge. Você pode assumir que seu
predicado fourPath da questão anterior está corretamente implementado. Exemplo:

?- countFourPath(N).

N = 11.

(c) (4 Pontos) Escreva um predicado notEuc(X, Y, Z), que seja verdade se houver um triângulo
não euclidiano no grafo. Um triângulo é euclidiano se a soma de quais dois lados é maior que o
tamanho do terceiro lado. Assuma que o terceiro elemento de cada átomo edge(A, B, T) é o
tamanho da aresta formada pelos nós A e B. Por exemplo:

?- notEuc(X, Y, Z).

X = a,

Y = b,

Z = c

5

5. Cada um dos itens abaixo contém uma construção Java. Em cada uma dessas situações, diga se uma
exceção pode acontecer, e, em caso afirmativo, explique que tipo de exceção é essa. Não é necessário
dizer o nome da exceção. Explique somente o tipo de erro que ela descreve. Por exemplo, não é preciso
escrever SonBeatMotherException; em vez disso, você pode escrever: “esse erro ocorre quando um
filho usa de violência contra a sua própria mãe”.

(a) (2 Pontos) Invocação de método em Java:

Object o = getNewObject();

o.toString();

(b) (2 Pontos) Multiplicação de inteiros em Java:

int a = 1073741824; // 2^30

int b = 1073741825; // 2^30 + 1

int c = a * b;

(c) (2 Pontos) Coerção em Java:

Dog d = (Dog)x;

(d) (2 Pontos) Acesso ao primeiro elemento de um arranjo em Java:

int x = v[0];

(e) (2 Pontos) Adição de double e byte em Java:

double d = 3.141596;

byte b = 3;

double c = b + d;

6

