
Prova Final de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Serão avaliadas as seis melhores respostas. Então sinta-se livre para abandonar alguma questão devido
ao tempo.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7

1

1. Uma linguagem é dita reflexiva quando programas escritos nesta linguagem podem obter ou modificar
informações a respeito de si mesmos.

(a) (5 pontos) A reflexividade passiva ocorre quando a linguagem de programação permite que o
programa descubra informações a respeito de si mesmo. Escreva um programa, em pseudo-código,
que ilustre este conceito. Este programa pode ser escrito em um paradigma imperativo, lógico
ou funcional. Explique qual o papel da reflexividade em seu exemplo, e informe o nome de uma
linguagem de programação onde seja posśıvel escrever um programa com capacidade similar.

(b) (5 pontos) A reflexividade é dita ativa quando o programa pode modificar-se. Novamente, escreva
um programa, em pseudo-código, que ilustre tal conceito. Explique como, neste caso, o programa
se modifica, e informe o nome de uma linguagem de programação que permita a criação de um
programa similar.

2

2. Esta questão refere-se à passagem de parâmetros por nome. Este método causa a avaliação do
parâmetro real sempre, e somente se, ele for utilizado no corpo da função chamada.

(a) (5 pontos) Para evitar a captura de variáveis, um fenômeno que ocorre na passagem de parâmetros
por expansão de macros, a avaliação do parâmetro formal, na passagem por nomes, utiliza o con-
texto do chamador. Escreva um programa, em pseudo-código, que retornaria resultados diferentes,
dependendo do método de chamada ser expansão de macros ou passagem por nome.

(b) (5 pontos) A passagem por nomes difere da avaliação preguiçosa por que esta última utiliza
um cache para evitar a múltipla avaliação de parâmetros. Escreva um programa, em pseudo-
código, que mostre de forma irrefutável a diferença entre estes dois mecanismos de passagem de
parâmetros.

3

3. A questão que se segue utiliza à interface e às duas classes abaixo, que implementam uma lista en-
cadeada. Um nodo pode conter um dado, e um próximo nodo, ou ele pode ser um nodo nulo, que
indica o final da lista. Nodos são criados assim: Node<Integer> n1 = new ConsNode<Integer>(0,
new NilNode<Integer>());. Em cada um dos items, você deverá implementar um método tanto para
a classe ConsNode quanto para a classe NilNode.

interface Node<E> { class ConsNode<E> implements Node<E> {
boolean contains(E e); ConsNode(E elem, Node<E> n) { ... }
void replace(E oldE, E newE); public boolean contains(E e) { ... }
Node<E> append(Node<E> n); public void replace(E oldE, E newE) { ... }

} public Node<E> append(Node<E> n) { ... }
}

class NilNode<E> implements Node<E> {
public boolean contains(E e) { ... }
public void replace(E oldE, E newE) { ... }
public Node<E> append(Node<E> n) { ... }

}

(a) (3 pontos) Implemente o método contains em ambas as classes. Este método retorna verdadeiro
se o nodo contém um dado elemento, ou um de seus sucessores contêm tal elemento.

(b) (3 pontos) Implemente o método replace, que recebe dois elementos, um antigo e um novo, e
substitui todas as ocorrências do elemento antigo pelo elemento novo.

(c) (4 pontos) Implemente o método append, tal que n.append(l) vai inserir l como o último ele-
mento na cadeia de nodos que começa com n. Qual o comportamento de n.append(n) em sua
implementação?

4

4. (10 pontos) Em Prolog podemos representar um digrafo via uma lista de vértices, e um conjunto de
predicados edge(V1, V2), que é verdade se o grafo possuir uma aresta do nodo V1 para o nodo V2.
Abaixo temos dois exemplos de grafos:

vertices([a, b, c, d, e, f])

edge(a, b).
edge(b, e).
edge(e, d).
edge(d, c).
edge(c, e).
edge(e, f).
edge(e, a).
edge(c, f).

a e

b

d

cf

vertices(a, b, c, d])

edge(c, b).
edge(a, c).
edge(c, d).
edge(d, a).

a

b

d

c

(Grafo G1) (Grafo G2)

Dado um programa que represente um grafo, implemente um predicado hamilPath(L), que é verdade
se a lista L for uma permutação da lista de vértices que designe um caminho hamiltoniano neste grafo.
Um caminho hamiltoniano é uma sequência de vértices adjacentes que contenha todos os vértices do
d́ıgrafo, mas que contenha cada vértice somente uma vez. Em nosso exemplo, teŕıamos:

?- hamilPath(G1)
G1 = [a, b, c, d, e, f];
...

?- hamilPath(G2)
false.

Assuma que seu programa contenha um predicado vertices[L], onde L é uma lista de vértices, e uma
série de predicados edge(u, v), onde tanto u quanto v sejam átomos presentes em L. Oh, e esqueça
a eficiência: este problema é NP-completo.

5

5. Linguagens ditas Orientadas por Objetos são conhecidas por utilizarem a memória heap pesadamente.
O heap é muito mais dif́ıcil de gerir que a alocação estática, e mesmo a alocação de pilha. Entre-
tanto, há situações em que dados do heap podem ser movidos para as outras áreas de memória, mais
“manuseáveis”.

(a) (3 pontos) Em Java, objetos normalmente são armazenados no heap. Escreva um programa em
Java que não funcionaria de acordo com a semântica padrão da linguagem caso objetos fossem
alocados na pilha, e não no heap. Por que o programa não funcionaria corretamente?

(b) (4 pontos) Muitos compiladores implementam uma análise de código chamada Escape Analysis.
Esta análise prova que um objeto, criado no corpo de um método, pode ser alocado na pilha,
sem que isto mude a semântica do programa. Descreva, de forma objetiva, os critérios que o
compilador deveria utilizar para provar que um objeto pode ser alocado na pilha.

(c) (3 pontos) Qual a vantagem de se alocar um objeto na pilha, e não no heap, como normalmente
é feito?

6

6. Na linguagem Fortran, arranjos são normalmente alocados em memória segundo o modelo column-
major. Isto quer dizer que matrizes são alocadas por coluna, conforme mostrado na figura abaixo:

00 01 02

10 11 12

20 21 22

00 10 2001 11 2102 12 22... ...

Uma matriz como esta: será alocada em memória assim:

(a) (3 pontos) Qual é a fórmula para calcular o endereço, em bytes, de um arranjo bidimensional A[i,
j] contendo M linhas e N colunas? Ao escrever a fórmula, assuma que o endereço da primeira
posição do arranjo é dada por base, e que cada palavra da arquitetura alvo contém word bytes.

(b) (7 pontos) Existe alguma provável diferença de eficiência entre os dois programas abaixo, escritos
em Fortran 90? Justifique a sua resposta.

real A(3000,3000)
integer i,j
j = 1
i = 1
while (i < 3000) do
 while (j < 3000) do
 a(i,j) = real(i)/real(j)
 enddo
enddo

real A(3000,3000)
integer i,j
j = 1
i = 1
while (j < 3000) do
 while (i < 3000) do
 a(i,j) = real(i)/real(j)
 enddo
enddo

(i) Fixa-se a linha, varia-se a coluna: (ii) Fixa-se a coluna, varia-se a linha:

7

7. (10 pontos) Considere o programa Java abaixo, e diga o que será impresso pelo método main.

public class Avatar {
public void buy(Knife k) {
System.out.println("Avatar bought a knife");

}
public void buy(Sword s) {
System.out.println("Avatar bought a sword");

}
}

public class Knife {
public void isBoughtBy(Avatar a) {
a.buy(this);

}
}

public class Sword extends Knife {
public void isBoughtBy(Avatar a) {
a.buy(this);

}
}

public class SpiderAv extends Avatar {
public void buy(Knife k) {
System.out.println("Spider bought a knife");

}
public void buy(Sword s) {
System.out.println("Spider bought a sword");

}
public static void main(String args[]) {
Avatar a1 = new Avatar();
Avatar a2 = new SpiderAv();
SpiderAv sa = new SpiderAv();
Knife ks = new Sword();
a1.buy(ks); // 1 Ponto
a2.buy(ks); // 1 Ponto
sa.buy(ks); // 2 Pontos
ks.isBoughtBy(a1); // 2 Pontos
ks.isBoughtBy(a2); // 2 Pontos
ks.isBoughtBy(sa); // 2 Pontos

}
}

8

