Prova Final de Linguagens de Programacao
- DCC024B -
Ciéncia da Computacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:

e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.
e Quando escrever cédigo, a sintaxe correta é importante.

e Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.
Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e Serao avaliadas as seis melhores respostas. Entao sinta-se livre para abandonar alguma questao devido
ao tempo.

e A prova nao é dificil, ela é divertida, entdo aproveite!

Tabela 1: Pontos acumulados

Questao 1 | Questao 2 | Questdo 3 | Questdo 4 | Questao 5 | Questdo 6 | Questdao 7

1. Uma linguagem é dita reflexiva quando programas escritos nesta linguagem podem obter ou modificar
informagoes a respeito de si mesmos.

(a) (5 pontos) A reflexividade passiva ocorre quando a linguagem de programagdo permite que o
programa descubra informacoes a respeito de si mesmo. Escreva um programa, em pseudo-c6digo,
que ilustre este conceito. Este programa pode ser escrito em um paradigma imperativo, 16gico
ou funcional. Explique qual o papel da reflexividade em seu exemplo, e informe o nome de uma
linguagem de programacao onde seja possivel escrever um programa com capacidade similar.

(b) (5 pontos) A reflexividade é dita ativa quando o programa pode modificar-se. Novamente, escreva
um programa, em pseudo-codigo, que ilustre tal conceito. Explique como, neste caso, o programa
se modifica, e informe o nome de uma linguagem de programacdo que permita a criacdo de um
programa similar.

2. Esta questao refere-se a passagem de parametros por nome. FEste método causa a avaliacao do
parametro real sempre, e somente se, ele for utilizado no corpo da fungao chamada.

(a) (5 pontos) Para evitar a captura de varidveis, um fen6meno que ocorre na passagem de parametros
por expansao de macros, a avaliacao do parametro formal, na passagem por nomes, utiliza o con-
texto do chamador. Escreva um programa, em pseudo-cédigo, que retornaria resultados diferentes,
dependendo do método de chamada ser expansao de macros ou passagem por nome.

(b) (5 pontos) A passagem por nomes difere da avaliacio preguigosa por que esta tdltima utiliza
um cache para evitar a miltipla avaliacao de pardmetros. Escreva um programa, em pseudo-
codigo, que mostre de forma irrefutdvel a diferenca entre estes dois mecanismos de passagem de
parametros.

3. A questao que se segue utiliza & interface e as duas classes abaixo, que implementam uma lista en-
cadeada. Um nodo pode conter um dado, e um préximo nodo, ou ele pode ser um nodo nulo, que
indica o final da lista. Nodos sfo criados assim: Node<Integer> nl = new ConsNode<Integer>(0,
new NilNode<Integer>());. Em cada um dos items, vocé deverd implementar um método tanto para
a classe ConsNode quanto para a classe NilNode.

interface Node<E> { class ConsNode<E> implements Node<E> {
boolean contains(E e); ConsNode(E elem, Node<E>n) { ... }
void replace(E oldE, E newE); public boolean contains(E e) { ... }
Node<E> append(Node<E> n); public void replace(E oldE, E newE) { ... }
} public Node<E> append(Node<E> n) { ... }
}
class NilNode<E> implements Node<E> {
public boolean contains(E e) { ... }
public void replace(E oldE, E newE) { ... }
public Node<E> append(Node<E> n) { ... }

}

(a) (3 pontos) Implemente o método contains em ambas as classes. Este método retorna verdadeiro
se 0 nodo contém um dado elemento, ou um de seus sucessores contém tal elemento.

(b) (3 pontos) Implemente o método replace, que recebe dois elementos, um antigo e um novo, e
substitui todas as ocorréncias do elemento antigo pelo elemento novo.

(¢) (4 pontos) Implemente o método append, tal que n.append(1) vai inserir 1 como o tltimo ele-
mento na cadeia de nodos que comeca com n. Qual o comportamento de n.append(n) em sua
implementacao?

4. (10 pontos) Em Prolog podemos representar um digrafo via uma lista de vértices, e um conjunto de
predicados edge(V1, V2), que é verdade se o grafo possuir uma aresta do nodo V1 para o nodo V2.
Abaixo temos dois exemplos de grafos:

vertices([a, b, ¢, d, e, f]) vertices(a, b, c, d])
edge (a, b) edge (c, b).

edge (b, e) edge (a, c).

edge (e, d) a€——e—>d edge (c, d). a<€«<——d
edge (d, c) edge (d, a).

edge (c, e)

edge (e, f) b f €«——c b<«—c
edge (e, a)

edge (¢, £) (Grafo G1) (Grafo G2)

Dado um programa que represente um grafo, implemente um predicado hamilPath (L), que é verdade
se a lista L for uma permutacao da lista de vértices que designe um caminho hamiltoniano neste grafo.
Um caminho hamiltoniano é uma sequéncia de vértices adjacentes que contenha todos os vértices do
digrafo, mas que contenha cada vértice somente uma vez. Em nosso exemplo, teriamos:

?- hamilPath(G1)
Gl =[a, b, ¢, d, e, f];

?- hamilPath(G2)
false.

Assuma que seu programa contenha um predicado vertices[L], onde L é uma lista de vértices, e uma
série de predicados edge(u, v), onde tanto u quanto v sejam atomos presentes em L. Oh, e esquecga
a eficiéncia: este problema é NP-completo.

5. Linguagens ditas Orientadas por Objetos sao conhecidas por utilizarem a memoria heap pesadamente.
O heap é muito mais dificil de gerir que a alocacao estatica, e mesmo a alocagao de pilha. Entre-
tanto, ha situagoes em que dados do heap podem ser movidos para as outras areas de memoria, mais
“manuseaveis” .

(a) (3 pontos) Em Java, objetos normalmente sdo armazenados no heap. Escreva um programa em
Java que nao funcionaria de acordo com a seméntica padrao da linguagem caso objetos fossem
alocados na pilha, e nao no heap. Por que o programa nao funcionaria corretamente?

(b) (4 pontos) Muitos compiladores implementam uma andlise de cédigo chamada Escape Analysis.
Esta anélise prova que um objeto, criado no corpo de um método, pode ser alocado na pilha,
sem que isto mude a semantica do programa. Descreva, de forma objetiva, os critérios que o
compilador deveria utilizar para provar que um objeto pode ser alocado na pilha.

(¢) (3 pontos) Qual a vantagem de se alocar um objeto na pilha, e ndo no heap, como normalmente
é feito?

6. Na linguagem Fortran, arranjos sao normalmente alocados em meméria segundo o modelo column-
magjor. Isto quer dizer que matrizes sao alocadas por coluna, conforme mostrado na figura abaixo:

Uma matriz como esta: serd alocada em memoria assim:

00 01 02 00 01 02 10 11 12 20 21 22
10 11 12

20 21 22

(a) (3 pontos) Qual é a férmula para calcular o enderego, em bytes, de um arranjo bidimensional A[i,
j] contendo M linhas e N colunas? Ao escrever a férmula, assuma que o enderego da primeira
posicao do arranjo é dada por base, e que cada palavra da arquitetura alvo contém word bytes.

(b) (7 pontos) Existe alguma provével diferenga de eficiéncia entre os dois programas abaixo, escritos
em Fortran 907 Justifique a sua resposta.

_[(1) Fixa-se a linha, varia-se a coluna: _ _[(i1) Fixa-se a coluna, varia-se a linha: _

real A(3000,3000)
integer 1i,j
j=1
i=1
while (i < 3000) do
while (j < 3000) do
a(i,j) = real(i)/real(j)
enddo
enddo

real A(3000,3000)
integer 1i,j
j=1
i=1
while (j < 3000) do
while (i < 3000) do
a(i,j) = real(i)/real(j)
enddo
enddo

7. (10 pontos) Considere o programa Java abaixo, e diga o que serd impresso pelo método main.

public class Avatar {
public void buy(Knife k) {
System.out.println("Avatar bought a knife");
}
public void buy(Sword s) {
System.out.println("Avatar bought a sword");
}
}

public class Knife {
public void isBoughtBy(Avatar a) {
a.buy(this);
}
}

public class Sword extends Knife {
public void isBoughtBy(Avatar a) {
a.buy(this);
}
}

public class SpiderAv extends Avatar {
public void buy(Knife k) {
System.out.println("Spider bought a knife");
}
public void buy(Sword s) {
System.out.println("Spider bought a sword");
}
public static void main(String args[]) {
Avatar al = new Avatar();
Avatar a2 = new SpiderAv();
SpiderAv sa = new SpiderAv();
Knife ks = new Sword();

al.buy(ks); // 1 Ponto
a2.buy (ks) ; // 1 Ponto
sa.buy (ks) ; // 2 Pontos
ks.isBoughtBy(al); // 2 Pontos
ks.isBoughtBy(a2) ; // 2 Pontos
ks.isBoughtBy(sa) ; // 2 Pontos

