
Segunda Prova de Linguagens de Programação
- DCC024 -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor1.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Q. Extra

1Se você perguntar ao instrutor qual a cor dos domingos, terá gasto a sua pergunta. O mesmo vale para “que horas são
agora?”, ou “posso usar meu direito de fazer uma pergunta?” Quando faltarem vinte minutos para o fim da prova, o instrutor
dará o aviso.

1

1. Nesta questão você deverá implementar um predicado multset em Prolog. Para tanto, você irá imple-
mentar dois predicados auxiliares.

(a) (3 Pontos) Implemente um predicado rangelist(N, S), que seja verdade quando S for uma lista
de tamanho entre 1 e N (inclusive). Por exemplo:

?- rangelist(2, [a, b]).

true.

?- rangelist(3, [a, b]).

true.

?- rangelist(1, [a, b]).

false.

?- rangelist(2, L).

L = [].

L = [_G01].

L = [_G01, _G02].

(b) (3 Pontos) Escreva um predicado submulset(S, L), que seja verdadeiro quando cada elemento
de S estiver presente em L. Por exemplo:

?- submulset([a, b, a, b], [a, b]).

true.

?- submulset([a, b, a, b], [a, b, c]).

true.

?- submulset([a, b, c, a, b], [a, b]).

false.

(c) (4 Pontos) Escreva um predicado multset(N, L, S), que seja verdadeiro quando os dois fatos
abaixo forem verdade:

• S for uma lista com tamanho entre 1 e N elementos (inclusive);

• Cada elemento de S é um membro de L.

Você pode usar os dois predicados feitos nas questões anteriores para resolver esse exerćıcio. Caso
não os tenha feito, você pode assumir a existência deles.

2

2. Esta questão refere-se aos dois programas abaixo, que estão escritos na linguagem de programação
Kotlin. Você precisa tentar inferir, seguindo a sua intuição, qual o significado da sintaxe usada nos
códigos abaixo para responder corretamente as perguntas que se seguem.

interface TreeNode {
 fun height(): Int
}

class TreeLeaf: TreeNode {
 override fun height(): Int {
 return 0
 }
}

class TreeValue(val v: Int, val l: TreeNode, val r: TreeNode): TreeNode {
 override fun height(): Int {
 val lHeight = l.height()
 val rHeight = r.height()
 return 1 + if (lHeight > rHeight) lHeight else rHeight
 }
}

fun main(args: Array<String>) {
 val numbers = listOf(2, 5, 3, 8, 1, 29, 43, 2, 15, 6, 1)
 val tree: TreeNode = numbers2Tree(numbers)
 println("Obj Height = " + tree.height())
}

interface TreeNode {
}

class TreeLeaf: TreeNode {
}

class TreeValue(val v: Int, val l: TreeNode, val r: TreeNode): TreeNode {
}

fun height(treeNode: TreeNode): Int {
 return when (treeNode) {
 is TreeLeaf -> 0
 is TreeValue -> 1 + max(height(treeNode.l), height(treeNode.r))
 else -> throw IllegalArgumentException("Unknown type")
 }
}

fun main(args: Array<String>) {
 val numbers = listOf(2, 5, 3, 8, 1, 29, 43, 2, 15, 6, 1)
 val tree: TreeNode = numbers2Tree(numbers)
 println("Obj Height = " + height(tree))
}

(a) (1 Ponto) Um desses programas implementa a função height de forma claramente orientada a
objetos. O outro, implementa a mesma função de forma claramente procedural. Qual desses
códigos é o mais orientado a objetos. Responda com “código à esquerda”ou “código à direita”.

(b) (3 Pontos) Caso fosse necessário adicionar um novo tipo de nó à árvore, por exemplo, um nó
ternário, qual das versões acima seria mais fácil de alterar? Justifique a sua resposta.

(c) (3 Pontos) Caso fosse necessário adicionar uma nova operação aos programas acima, por exemplo,
para imprimir o conteúdo de uma árvore, qual dos paradigmas de programação (procedural ou
orientado a objetos) acima seria mais fácil de ser estendido? Novamente, é necessário que você
justifique a sua resposta.

(d) (3 Pontos) É posśıvel transformar uma lista de números em uma árvore usando o código abaixo:

val numbers = listOf(2, 5, 3, 8, 1, 29, 43, 2, 15, 6, 1)
val initTree: TreeNode = TreeLeaf()
val tree: TreeNode = numbers.fold(initTree) { acc, i -> insert(acc, i) }

Explique o que é a sintaxe marcada em cinza. Mesmo que você jamais tenha visto Kotlin, é
esperado que você possa relacionar tal sintaxe a conceitos já vistos no curso de linguagens de
programação. Para ajudar na resposta, note que a função insert recebe uma árvore T e um
número N e produz uma nova árvore T ′ = T ∪ {N}.

3

3. Esta questão refere-se à forma como programas são executados em diferentes linguagens de pro-
gramação.

(a) (3 Pontos) Programas escritos em bash script são puramente interpretados. Isto é, a árvore de
sintaxe deles é interpretada, e código nunca é gerado para alguma máquina alvo. Por que bash é
normalmente executada desta forma?

(b) (3 Pontos) Programas escritos em C normalmente são compilados. Por que C é uma linguagem
normalmente compilada?

(c) (4 Pontos) Programas escritos em Java são tipicamente virtualizados. Isto é, código fonte é
compilado para uma linguagem de bytecodes, e esta linguagem é então interpretada pela máquina
virtual Java. Porque java é executada dessa forma, em vez de ser compilada como em C, ou em
vez de ser puramente interpretada, como em bash?

4

4. John Backus, quando recebeu o Prêmio Turing, em 1978, fez um discurso que continha o seguinte
trecho:

My point is this: while it was perhaps natural and inevitable that languages like FORTRAN
and its successors should have developed out of the concept of the von Neumann computer as they
did, the fact that such languages have dominated our thinking for twenty years is unfortunate. It
is unfortunate because their long-standing familiarity will make it hard for us to understand and
adopt new programming styles which one day will offer far greater intellectual and computational
power.

(a) John Backus ganhou o Prêmio Turing por ter inventado a linguagem de programação FORTRAN.
FORTRAN, sendo uma das primeiras linguagens de programação criada, é considerada membro da
Primeira Geração de Linguagens de Programação. Cite três outras linguagens que fazem parte,
junto com FORTRAN, da primeira geração de linguagens de programação, tendo sido criadas
ainda nos anos 50, e que tiveram mais de 1000 usuários ao longo de sua história:

• (1 Ponto)

• (1 Ponto)

• (1 Ponto)

(b) (1 Ponto) FORTRAN é uma linguagem que pertence a qual paradigma de programação?

(c) (2 Pontos) Quais outros dois grandes paradigmas de programação existem, além daquele ao qual
pertence FORTRAN?

• (1 Ponto)

• (1 Ponto)

(d) (2 Pontos) visto o discurso de John Backus, é fácil imaginar que o paradigma ao qual pertence
FORTRAN possui algumas desvantagens. Cite uma desvantagem desse paradigma, quando com-
parado com os outros dois paradigmas da questão anterior.

5

5. Questão Extra:

Qual o nome dos cinco Cavaleiros de Bronze que protagonizaram o Anime “Cavaleiros do Zod́ıaco”?

Se você está em dúvida sobre a resposta desta questão, e sente-se tentado a olhar a prova de seu colega
ao lado, lembre-se que você deu a sua palavra de honra que não trapaceará neste exame 2.

2E lembre-se que a palavra de um verdadeiro cavaleiro não é fumaça

6

