
Segunda Prova de Linguagens de Programação
- DCC024 -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor. São perguntas: “Posso fazer uma pergunta?”ou “Quanto
tempo falta?”

• Você pode ir ao banheiro, mas deve deixar seu telefone celular sobre a mesa quando o fizer (e lembre-se
do trato feito para esta prova).

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Extra

Questão Extra (0.5 Pontos): O que poderia demandar o joelho de um menino que cresceu? A exemplo
do que pediu o Joelho Juvenal?

1

Fernando Magno Quintao Pereira
Que o menino fizesse furinhos na calça, para ele poder enxergar

1. Esta questão refere-se à forma como arranjos são implementados em linguagens de programação im-
perativas.

(a) (3 Pontos) Linguagens imperativas implementam arranjos de forma que seja posśıvel termos acesso
a qualquer posição em tempo constante; isto é, em O(1). Como isso é posśıvel?

(b) (3 Pontos) Como seria armazenado em memória uma estrutura como aquela apontada pelo pon-
teiro p no programa abaixo?

void init(int** p, unsigned N) {

for (int i = 0; i < N; i++) {

for (int j = 0; j <= i; j++) {

p[i][j] = 1;

}

}

}

(c) (1 Ponto) Qual dos dois programas abaixo deve ser mais eficiente?

int sum = 0;
for (i = 0; i < M; i++) {
 for (j = 0; j < N; j++) {
 sum += m[i][j];
 }
}

int sum = 0;
for (j = 0; j < N; j++) {
 for (i = 0; i < M; i++) {
 sum += m[i][j];
 }
}

01
02
03
04
05
06

01
02
03
04
05
06

Programa 1: Programa 2:

(d) (3 Pontos) Justifique a sua resposta para a questão anterior.

2

Fernando Magno Quintao Pereira
Por que memória é contígua e o tamanho de cada célula é conhecido. Então o acesso acontece via base e offset

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira
O da esquerda

Fernando Magno Quintao Pereira
C armazena arranjos por linha. Então o programa da esquerda possui melhor localidade de referência.

2. As questões a seguir pedem programas que devem ser implementados na linguagem de programação
Prolog.

(a) (3 Pontos) Implemente um predicado sublist(L, S) que seja verdade quando S for uma sublista
de L. Por exemplo:

?- findall(L, sublist([a, b, c], L), R).

R = [[a, b, c], [a, b], [a, c], [a], [b, c], [b], [c], []].

(b) (3 Pontos) Implemente um predicado perm(L, P) que seja verdade quando P for uma permutação
dos elementos da lista L. Por exemplo:

?- findall(P, perm([a, b, c], P), R).

R = [[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]].

Você pode usar o predicado select. Por exemplo:

?- findall((E, S), select(E, [a, b, c], S), R).

R = [(a, [b, c]), (b, [a, c]), (c, [a, b])].

(c) (4 Pontos) Escreva um predicado anagram(L, A), que seja verdade se a lista A for um anagrama
de alguma subsequência da lista L. Por exemplo:

?- anagram([l, i, v, r, e, s], [s, e, r, v, i, l]).

true.

?- anagram([l, i, v, r, e, s], [s, a, r, v, i, l]).

false.

?- anagram([l, i, v, r, e, s], [s, i, r, e]).

true.

3

Fernando Magno Quintao Pereira
sublist([], []).
sublist([H|T], [H|L]) :- sublist(T, L).
sublist([_|T], L) :- sublist(T, L).

Fernando Magno Quintao Pereira
perm([], []).
perm(T, [H|LL]) :- select(H, T, L1), perm(L1, LL).

Fernando Magno Quintao Pereira
nperm([], []).
nperm([H|T], L) :- nperm(T, Lx), select(H, L, Lx).

Fernando Magno Quintao Pereira
anagram(L, A) :- sublist(L, S), perm(S, A).

3. Ligue as linguagens de programação à esquerda com caracteŕısticas que elas possuem à direita. Você
deve estabelecer uma bijeção entre as duas colunas. Cada resposta correta vale um ponto.

C, C++, Fortran

Tipagem fraca

Python, JavaScript, Prolog

Tipagem dinâmica

Java, Python, C++

Invocação dinâmica

Rust, C, C++

Execução via compilação

Python, SML, JavaScript

Suporte a closures

Java, SML, C++ Tipagem estática

SML, Haskell, ocaml

Programação funcional

Python, Java, JavaScript

Execução virtualizada
(implementação típica)

C++, Java, SML

Polimorfismo paramétrico

R, Haskell, C macros

Avaliação não estrita

C, SML, Prolog Funções de cauda rasa
exemplo

Era uma vez um joelho que se chamava Juvenal. Juvenal tinha um problema, coitado: vivia todo
escalavrado. Também, quem mandou o Juvenal ser o joelho de um menino levado? Juvenal
queria muito aprender língua de menino só pra dizer assim: "Menino, tem dó de mim!" Mas,
quando o esfolado sarava, Juvenal bem que gostava de correr e de saltar. E ele se desdobrava e
se dobrava outra vez todo alegre, pois sabia que, indo e vindo, fazia o menino feliz. (Ziraldo)

4

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

Fernando Magno Quintao Pereira

