
Segunda Prova de Linguagens de Programação
- DCC024 -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor. São perguntas: “Posso fazer uma pergunta?”ou “Quanto
tempo falta?”

• Você pode ir ao banheiro, mas deve deixar seu telefone celular sobre a mesa quando o fizer (e lembre-se
do trato feito para esta prova).

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Extra

Questão Extra (0.5 Pontos): O que poderia demandar o joelho de um menino que cresceu? A exemplo
do que pediu o Joelho Juvenal?
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Que o menino fizesse furinhos na calça, para ele poder enxergar



1. Esta questão refere-se à forma como arranjos são implementados em linguagens de programação im-
perativas.

(a) (3 Pontos) Linguagens imperativas implementam arranjos de forma que seja posśıvel termos acesso
a qualquer posição em tempo constante; isto é, em O(1). Como isso é posśıvel?

(b) (3 Pontos) Como seria armazenado em memória uma estrutura como aquela apontada pelo pon-
teiro p no programa abaixo?

void init(int** p, unsigned N) {

for (int i = 0; i < N; i++) {

for (int j = 0; j <= i; j++) {

p[i][j] = 1;

}

}

}

(c) (1 Ponto) Qual dos dois programas abaixo deve ser mais eficiente?

int sum = 0;
for (i = 0; i < M; i++) {
    for (j = 0; j < N; j++) {
        sum += m[i][j];
    }
}

int sum = 0;
for (j = 0; j < N; j++) {
    for (i = 0; i < M; i++) {
        sum += m[i][j];
    }
}
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Programa 1: Programa 2:

(d) (3 Pontos) Justifique a sua resposta para a questão anterior.
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Por que memória é contígua e o tamanho de cada célula é conhecido. Então o acesso acontece via base e offset
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O da esquerda
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C armazena arranjos por linha. Então o programa da esquerda possui melhor localidade de referência.



2. As questões a seguir pedem programas que devem ser implementados na linguagem de programação
Prolog.

(a) (3 Pontos) Implemente um predicado sublist(L, S) que seja verdade quando S for uma sublista
de L. Por exemplo:

?- findall(L, sublist([a, b, c], L), R).

R = [[a, b, c], [a, b], [a, c], [a], [b, c], [b], [c], []].

(b) (3 Pontos) Implemente um predicado perm(L, P) que seja verdade quando P for uma permutação
dos elementos da lista L. Por exemplo:

?- findall(P, perm([a, b, c], P), R).

R = [[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]].

Você pode usar o predicado select. Por exemplo:

?- findall((E, S), select(E, [a, b, c], S), R).

R = [(a, [b, c]), (b, [a, c]), (c, [a, b])].

(c) (4 Pontos) Escreva um predicado anagram(L, A), que seja verdade se a lista A for um anagrama
de alguma subsequência da lista L. Por exemplo:

?- anagram([l, i, v, r, e, s], [s, e, r, v, i, l]).

true.

?- anagram([l, i, v, r, e, s], [s, a, r, v, i, l]).

false.

?- anagram([l, i, v, r, e, s], [s, i, r, e]).

true.
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sublist([], []).
sublist([H|T], [H|L]) :- sublist(T, L).
sublist([_|T], L) :- sublist(T, L).

Fernando Magno Quintao Pereira
perm([], []).
perm(T, [H|LL]) :- select(H, T, L1), perm(L1, LL).

Fernando Magno Quintao Pereira
nperm([], []).
nperm([H|T], L) :- nperm(T, Lx), select(H, L, Lx).
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anagram(L, A) :- sublist(L, S), perm(S, A).



3. Ligue as linguagens de programação à esquerda com caracteŕısticas que elas possuem à direita. Você
deve estabelecer uma bijeção entre as duas colunas. Cada resposta correta vale um ponto.

C, C++, Fortran

Tipagem fraca

Python, JavaScript, Prolog

Tipagem dinâmica

Java, Python, C++

Invocação dinâmica

Rust, C, C++

Execução via compilação

Python, SML, JavaScript

Suporte a closures

Java, SML, C++ Tipagem estática

SML, Haskell, ocaml

Programação funcional

Python, Java, JavaScript

Execução virtualizada
(implementação típica)

C++, Java, SML

Polimorfismo paramétrico

R, Haskell, C macros

Avaliação não estrita

C, SML, Prolog Funções de cauda rasa
exemplo

Era uma vez um joelho que se chamava Juvenal. Juvenal tinha um problema, coitado: vivia todo 
escalavrado. Também, quem mandou o Juvenal ser o joelho de um menino levado? Juvenal 
queria muito aprender língua de menino só pra dizer assim: "Menino, tem dó de mim!" Mas, 
quando o esfolado sarava, Juvenal bem que gostava de correr e de saltar. E ele se desdobrava e 
se dobrava outra vez todo alegre, pois sabia que, indo e vindo, fazia o menino feliz. (Ziraldo)
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