
Segunda Prova de Linguagens de Programação
- DCC024 -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Isso inclui “Quanto
tempo falta para acabar a prova”. Para a pergunta: “Posso ir ao banheiro”, a resposta é sim (deixe o
telefone celular sobre a mesa para ir ao banheiro).

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Extra

Questão Extra (0.5 Pontos): O nome do diretor de “Cidade de Deus”.

1

1. Esta questão é sobre a diferença dos mecanismos que Python e C++ oferecem para a programação
orientada a objetos.

(a) (2 Pontos) Considere o programa abaixo, escrito em C++. Use o espaço à direita para traduzir
este programa para Python.

class Ponto {
 private:
 int x;
 public:
 Ponto(int v) : x(v) {
 }
 virtual int
 dobro() const {
 return 2 * x;
 }
};

(b) (2 Pontos) Haveria algo equivalente aos modificadores de acesso public e private em Python?
Justifique a sua resposta com um exemplo, ou com uma explicação sucinta.

(c) (2 Pontos) O que significa a palavra virtual em C++?

(d) (2 Pontos) O alvo de chamadas virtuais em C++ pode ser resolvido em O(1). Por que isso não é
posśıvel em Python?

(e) (2 Pontos) Essa ideia de chamadas virtuais surgiu há bastante tempo atrás, nos idos dos anos 60.
Qual linguagem a introduziu?

2

2. A próxima questão se refere a história de algumas linguagens de programação.

(a) (5 Pontos) Fortran surgiu como a principal linguagem de sistemas nos anos 1950, mas acabou
perdendo espaço, primeiro para C, nos anos 1970, e depois para C++, nos anos 1980. Desde então,
C++ se tornou a linguagem dominante em sistemas como kernels, servidores, jogos eletrônicos,
navegadores, entre outros. Mesmo linguagens muito populares, como Java, não conseguiram
deslocar esse domı́nio. Por que Java não desbancou C++ como a linguagem de sistemas nos anos
2000, apesar de sua enorme popularidade na época? Cite ao menos uma razão que torna Java
inadequada para programação desses tipos de sistemas computacionais.

(b) (5 Pontos) COBOL foi, durante as décadas de 1960 e 1970, a principal linguagem de negócios,
amplamente utilizada em sistemas bancários e corporativos. Esses programas eram caracterizados
por seu grande porte, complexidade, divisão em múltiplos módulos e desenvolvimento por equipes
extensas. A partir dos anos 1990, porém, Java (e, em menor grau, C#) passou a ocupar esse
espaço, tornando-se a linguagem dominante em sistemas corporativos modernos. Mesmo Python,
que hoje é mais popular do que Java, não assumiu esse papel. Por que Python não consegue
substituir Java no desenvolvimento desses sistemas corporativos de grande escala?

3

3. O objetivo desta questão é construir uma agenda de compromissos em Prolog. A base de conhecimento
abaixo representa compromissos de uma pessoa ao longo do dia, relacionando o horário à descrição
(assuma que somente horas inteiras são usadas):

compromisso(9, aula_de_lp).

compromisso(11, reuniao_do_lab).

compromisso(14, escrever_relatorio).

compromisso(16, ginastica).

(a) (2 Pontos) Defina um predicado tem compromisso(H) que seja verdadeiro quando houver um
compromisso cadastrado na hora H. Por exemplo, tem compromisso(11) deve ser verdadeiro,
enquanto tem compromisso(10) deve ser falso.

(b) (2 Pontos) Defina um predicado descricao(Hora, Desc) que relacione a hora de um compromisso
à sua descrição. Por exemplo, a consulta descricao(11, D) deve produzir D = reuniao do lab.

(c) (2 Pontos) Defina um predicado range(B, E, Lista) que produza uma lista contendo todos os
inteiros de B até E, inclusive. Por exemplo, a consulta range(10, 14, R) deve gerar R = [10,

11, 12, 13, 14].

(d) (2 Pontos) Defina um predicado compromisso intervalo(B, E, Hora, Desc) que seja verda-
deiro quando houver um compromisso na hora Hora e essa hora estiver no intervalo entre B e E,
inclusive. O predicado deve também retornar a descrição Desc correspondente ao compromisso.
Você pode usar range, mesmo que não tenha feito a questão anterior. Por exemplo:

?- compromisso_intervalo(10, 15, Hora, Desc).

Hora = 11,

Desc = reuniao_do_lab ;

Hora = 14,

Desc = escrever_relatorio ;

Fique também à vontade para usar o predicado member(E, L) em sua resposta.

(e) (2 Pontos) Defina um predicado todos compromissos(B, E, Descs) que produza, em Descs, a
lista contendo as descrições de todos os compromissos agendados entre as horas B e E. Por exemplo:

?- todos_compromissos(10, 15, Descs).

Descs = [reuniao_do_lab, escrever_relatorio].

Fique à vontade para usar findall(Pattern, Expr, Accumulator).

4

