Prova Final de Linguagens de Programacao
- DCC024 -
Ciéncia da Computacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:
e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.

Quando escrever cédigo, a sintaxe correta é importante.

Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.
e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e Lembre-se do ganhador do Oscar de melhor filme em 2004. E lembre-se também: perguntando qual
foi o filme ganhador vocé perde a sua pergunta.

e A prova nao é dificil, ela é divertida, entao aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Questao 4 | Questao 5 | Questao 6

1. Existem linguagens em que a indentacao é parte da sintaxe. Python é uma destas linguagens. Uma
outra linguagem assim foi a primeira versao de Fortran.

(a) (2 pontos) Considere, por exemplo, os dois programas abaixo, ambos escritos em Python:

def facti(n): def fact2(n):
ans = 1 ans = 1
while n > 1: while n > 1:
ans *= n ans *= n
n-=1 n-=1
return ans return ans

O programa da esquerda calcula o fatorial de um inteiro n. O que faz o programa da direita?

(b) (4 pontos) Por que Guido van Rossum, o “pai”de Python, optou por tornar a indentagao impor-
tante para definir a seméantica dos programas?

(c) (4 pontos) A indentacao também era parte da sintaxe das primeiras versdes de Fortran, imple-
mentadas no final da década de 50. Porém, naquele caso, a razao desta importancia da indentacao
era bem diferente daquela observada em Python. Por que a indentagao era parte da sintaxe das
primeiras versoes de Fortran?

2. Muitas linguagens orientadas & objetos possuem o conceito de classes. Classes permitem que desen-
volvedores implementem tipos abstratos de dados. Java e Python sao duas linguagens que possuem
o conceito de classes. Por exemplo, abaixo temos uma classe Animal implementada em ambas as
linguagens:

Java Python

class Animal {
public void eat() {
System.out.println("eating");

class Animal:
def __init__(self, name):
self.name = name
def __str__(self):
return "Animal"
def eat(self):

print "eating."

}
public String toString () {
return "Animal";
}
}

(a) (6 pontos) Embora ambas as linguagens possuam o conceito de classe, elas sdo implementadas de
forma muito diferente nestas linguagens. Preencha a tabela abaixo com um dos seguintes simbolos
() (nenhuma linguagem), J (Java), P (Python) ou JP (Java e Python), dependendo de cada uma
destas linguagens disponibilizar, em sua implementagao de classes, a funcionalidade em questao
ou nao.

Funcionalidade Linguagens que a apresenta
Heranca
miultipla

Sobrecarga de
métodos nas
classes herdeiras
Classes como
valores de
“primeira classe”
Controle
de
visibilidade
Chamada de
métodos em
tempo O(1)
Insercao de novos
métodos durante
a execugao

(b) (4 pontos) Em geral, tanto Java quanto Python vao usar pesadamente a &rea de alocagio de dados
conhecida como heap. Pelo menos estas linguagens tendem a usar o heap mais que C ou Pascal,
por exemplo. Por que estas linguagens tendem a usar tanto o heap?

3. O programa abaixo, implementado em C, contém duas fung¢bes, swap_ii e swap-dd, que trocam o
conteudo de varidveis inteiras e de ponto flutuante, respectivamente.

void swap_ii(int* a, int* b) { int main() {
int __tmp = *a; int i1 = 2, i2 = 3;
*a = *b; double d1 = 2.71, d2 = 3.14;
*b = __tmp; swap_ii(&il, &i2);

} swap_dd(&d1, &d2);

void swap_dd(double* a, double* b) { printf("il=yd, i2=Yd\n", i1, i2);
int __tmp = *a; printf("di=%1f, d42=%1f\n", d1, d2);
*a = *b; }
*b = __tmp;

}

O cédigo deste programa é um tanto quanto redundante: as funcoes swap_ii e swap_dd possuem
quase o mesmo cddigo, exceto pelo tipo dos parametros. Se a linguagem C possuisse alguma forma de
polimorfismo paramétrico, entdo talvez pudéssemos mesclar ambas as fungoes em uma implementagao
comum. C nao prové este tipo de polimorfismo, porém esta linguagem, que nao nos cessa de encantar,
possui macros — um recurso com o qual podemos aumentar a sua sintaxe.

(a) (5 pontos) Implemente uma macro SWAP que receba trés coisas: os dois parametros que precisam
ser trocados, mais o tipo destes parametros. SWAP deve ser capaz de implementar tanto a fun-
cionalidade de swap_ii quanto swap_dd, ou qualquer outra fungao de troca de varidveis que se
pareca com as duas acima.

(b) (5 pontos) Re-implemente a fungdo main acima, para que ela utilize duas chamadas & sua macro
SWAP em vez das fungoes swap_ii e swap_dd.

4. (10 pontos) O problema da coloragdo de grafos é um classico problema NP-completo: temos um
conjunto de cores C, mais um grafo G = (V, E), formado por um conjunto de vértices V' e um conjunto
de arestas E. O problema pede por uma associacao entre elementos de C' e vértices em V' tal que
dados dois vertices v1 € V e vy € V, se a aresta v1vo € E, entao a cor associada a vy é diferente da cor
associada & ve. Em Prolog podemos representar este problema como mostrado na figura abaixo:

Uma possivel soluga para o problema

Grafo original: da coloragdo de grafos:
a bind(a,c2)

link(a, b). color(cl) .

e b link(b, c). color(c2).
link(c, d). color (c3). bind (e, cl) bind (b, cl)
link(d, e). color(cd) .
link (e, a). color (c5) .

d———— ¢ bind(d, c3) —bind(c,c2)

sol([bind(a, Cl), bind(b, C2), bind(c, C3), bind(d, C4), bind(e, C5)]) :-
color(Cl), color(C2), color(C3), color(C4), color(ChH),
\+ invalid([bind(a, Cl), bind(b, C2), bind(c, C3), bind(d, C4), bind(e, C5)]).

O predicado 1ink (X, Y) é usado para representar as arestas do grafo. Ele é verdade se o vértice X for
conectado ao vértice Y. J4 o predicado color(c) é verdade se o dtomo c for um elemento do conjunto
de cores C. O predicado sol(L) é verdade se a lista L for uma solucao para o problema da coloragao
de grafos. Cada elemento desta lista é um atomo composto bind(v, c), que denota o fato de a cor
c estar associada ao vértice v. Nesta questao vocé deve implementar o predicado invalid(L), que é
verdade se a lista L nao for uma solugao vélida para o problema da coloragao de grafos. Uma solugao
¢é invalida se existe uma cor c associada vértices vl e v2 adjacentes no grafo. Em Prologués, a solugao
¢é invalida se L contém dois elementos bind(vl, c) e bind(v2, c), tal que o predicado 1link(v1,
v2) seja verdadeiro. Nao se preocupe com a eficiéncia de sua implementacao. Caso vocé se lembre
dos predicados member e select, entao vocé consegue implementar o predicado invalid com somente
duas linhas! Vocé nao precisa implementar member ou select, pois estes predicados fazem parte da
biblioteca padrao de Prolog, mas vocé deve saber a sintaxe correta para usé-los. Se preferir, sinta-se
livre para implementar invalid sem usar estes predicados.

5. Considere os dois lagos abaixo, retirados de um programa escrito em C:

(a) for (int k = 0; k < Width * Width; k +=
Out [tid] += In[k] / (a - b) - In[k] /

}

(b) for (int k = 0; k < Width * Width; k +=

Out [tid] +=
Out [tid] -=
}

Inlk]l / (a - b);
Inlk] / (c - d);

width) {
(c - d);

Width) {

A tabela abaixo mostra o cédigo assembly que gcec produz para ambos os programas.

Primeiro lago (a)

Segundo lago (b)

$Lt_0_3074:
$Lt_0_3074: mov.£32 W7, hi6;
la.élobal.fSQ %7, [%hr12+0]; 1d.global.f32 %£8, [}r12+0];
mov.£32 %8, %f6; sub.£32 %£9, Y%f7, %f5;
sub. £32 vEQ . £, YE5: div.full.f32 Y%f10, %8, %f9;
div.full.f32 Y%£10, %f7, %f9; add.£32 Afll, Afl: %E10;
sub.f32 %f11l, %f4, %£3; st.global.f32 [Yr7+0], %f11;
div.full.f32 °/f12’ "/f?’ "/fli' ld.global.f32 %f12, [}r12+0];
sub.£32 %£13, %f10, %f12; sub.£32 ff13, ff4, Afsz
add. £32 yE1, Y£1, Yf13: div.full.f32 Yf14, %12, %f13;
st.global.f32 [%r7+0], %f1; sub.f32 Afl, Afll: hE14;
setp.1t.u32 %p3, %ril2, %ri3; st.global.f32 [Ur7+01, %f1;
@%p3 bra $Lt_0_3074; setp.lt.u32 %p3, %r12, %ri3;
’ - ’ @%p3 bra $Lt_0_3074;

Podemos ver que, quando compilando o lago (a), gcc -03 é capaz de usar somente uma instrugao de
leitura de memoria para obter o valor de In[k], ainda que este valor seja lido duas vezes no interior
do laco. Esta instrugdo é 1d.global.£32 %£7, [/r12+0]. Neste caso, gcc -03 1é o valor armazenado
na posicao [%r12+0], deposita este valor no registrador %f7, e a partir dai passa a usar somente este

registrador, cujo acesso é muito mais rapido que a memoria.

Infelizmente gcc -03 néo é capaz de otimizar o lago (b). Isto é, mesmo neste nivel de otimizagao, gcc
produz duas instrugoes de carregamento (1d.global.f£32) para ler o valor de In[k]. Por que gcc -03
nao pode remover a segunda leitura da memoria no caso do lago (b), mantendo o valor lido da primeira

vez em um registrador, conforme feito no primeiro lago?

6. Uma funcao recursiva é dita de cauda rasa quando a ultima coisa que ela faz é chamar-se recursivamente.
Re-implemente cada um dos predicados abaixo, para que eles sejam predicados de cauda rasa:

(a) (4 Pontos) O predicado que soma os elementos de uma lista:

sum([], 0).
sum([H|T], X) :- sum(T, XAux), X is XAux + H.

(b) (4 Pontos) O predicado que inverte os elementos de uma lista:

myappend ([]1, L, L).
myappend ([H|T], L, [H|LAux]) :- myappend(T, L, LAux).

myreverse([], [1).
myreverse([H|T], R) :- myreverse(T, RT), myappend(RT, [H], R).

(¢) (2 Pontos) Afinal de contas, qual a vantagem de implementarmos fungoes de cauda rasa?

