
Prova Final de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapaceei, estou trapaceando, ou trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio. O instrutor avisará quando faltarem
somente 15 minutos para o final do exame.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Lembre-se da cor dos domingos. E lembre-se também: perguntando qual é a cor dos domingos você
perde a sua pergunta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1

1. Algumas linguagens de programação favorecem um estilo de programação mais voltado às operações
algoŕıtmicas que compõem o problema a ser resolvido. SML é um exemplo de linguagem assim. Em
SML é mais natural programarmos de forma top-down: um problema é resolvido por uma função
principal, a qual deve ser expandida em várias sub-rotinas. Esse processo continua até que cada uma
das sub-rotinas tenha sido implementada. Outras linguagens favorecem um estilo de programação
mais voltado aos tipos de dados. Nessas linguagens as operações são parte dos tipos. Dados, nesse
caso, “sabem”executar as ações. O desenvolvimento tende, então, a ser visto de forma bottom-up: o
programa consiste em um conjunto de módulos. Cada módulo define um tipo, e cada tipo define as
operações que ele sabe realizar. É claro que essa dimensão de classificação de linguagens: orientada a
operações ou orientada a objetos não é ŕıgida. O programador pode desenvolver programas seguindo
uma filosofia, ainda que essa abordagem não seja a mais natural na linguagem que ele está usando.
Além disso, algumas linguagens permitem tanto uma forma de desenvolvimento quanto a outra. Temos
assim o espectro abaixo:

SML Smalltalk

Operações Objetos

De um lado temos SML, uma linguagem muito voltada às operações, e do outro temos Smalltalk, uma
linguagem muito voltada aos objetos.

(a) (1 Pontos) Preencha as caixas acima com as seguintes linguagens: Python, Java e C. A linguagem
mais orientada às operações deve estar mais próxima de SML, e a linguagem mais orientada aos
objetos deve estar mais próxima de Smalltalk.

(b) (3 Pontos) Justifique a sua escolha para Python.

(c) (3 Pontos) Justifique a sua escolha para Java.

(d) (3 Pontos) Justifique a sua escolha para C.

2

2. A linguagem assembly logo abaixo é Turing Completa:

(Variaveis) ::= {v1, v2, . . .}
– (Atribuição) | mov(v1, v2)

– (Adição) | add(v1, v2, v3)

– (Armazenamento em memória) | stm(v0, v1)

– (Carregamento da memória) | ldm(v1, v0)

– (Desvio se zero) | bzr(v, l)

– (Desvio incondicional) | jmp(l)

Um programa nessa linguagem pode ser descrito por uma tupla de três elementos: (P, pc,Σ). P é um
arranjo contendo instruções assembly. O inteiro pc é um contador usado para indexar instruções em
P . Finalmente, Σ é uma função que associa nomes de variáveis a valores inteiros. Algumas instruções
alteram o valor de pc. Outras alteram Σ. Abaixo vemos a semântica natural de três dessas instruções:
add, stm e bzr. A notação f [a 7→ b] denota λx.if x = a then b else f(x).

[AddSem]
P [pc] = add(v1, v2, v3) Σ[v2] = n2 Σ[v3] = n3 Σ

′
= Σ[v1 7→ (n2 + n3)] 〈P, pc + 1, Σ

′〉 → Σ
′′

〈P, pc, Σ〉 → Σ
′′

[StmSem]
P [pc] = stmem(v0, v1) Σ[v0] = x Σ[v1] = n Σ

′
= Σ[x 7→ n] 〈P, pc + 1, Σ

′〉 → Σ
′′

〈P, pc, Σ〉 → Σ
′′

[BzrSem]
P [pc] = bzr(v, l) Σ[v] 6= 0 〈P, pc + 1, Σ〉 → Σ

′

〈P, pc, Σ, Θ〉 → Σ
′

[BnzSem]
P [pc] = bzr(v, l) Σ[v] = 0 〈P, l, Σ〉 → Σ

′

〈P, pc, Σ〉 → Σ
′

(a) (3 Pontos) Escreva a semântica natural da instrução mov(v1, v2), que copia o conteúdo da variável
v2 para a variável v1. Dica: observe a regra AddSem logo acima.

(b) (3 Pontos) Escreva a semântica natural da instrução ldm(v1, v0), que é equivalente à atribuição
v1 = ∗v0. Isto é, essa instrução lê o conteúdo de v0, usa esse conteúdo como um endereço na
memória Σ, e copia o conteúdo desse endereço para a variável v1. Dica: observe a regra StmSem
logo acima.

(c) (4 Pontos) Escreva a semântica natural da instrução jmp(l), que desvia o contador de programas
para o rótulo l. Dica: observe as regras BzrSem e BnzSem logo acima.

3

3. Essa questão refere-se aos predicados abaixo, escritos em Prolog.

@([], L, L).
@([H|L1], L2, [H|X]) :- @(L1, L2, X).

rev([], []).
rev([H|T], X) :- @(XX, [H], X), rev(T, XX).

(a) (2 Pontos) Uma das duas buscas a seguir não termina: (i) rev([1], Q) ou (ii) rev(Q, [1]).
Qual dessas buscas, (i) ou (ii), não termina?

(b) (8 Pontos) Justifique a resposta dada acima mostrando a árvore de buscas da query que termina.

4

4. (10 Pontos) Nessa questão deverá ser desenvolvido em Prolog um sistema experto que encontre pares
entre potenciais casais de namorado. Por simplicidade assumiremos que rapazes e moças em nosso
mundo podem ter alguns dentre os quatro interesses: dançar, caminhar, rir e brincar. O melhor par
para uma moça é o rapaz com quem ela tem mais interesses em comum. Uma forma de representar
esses interesses é via os predicados abaixo. Nesse exemplo, assumimos que temos cadastrados em nosso
sistema quatro moças e quatro rapazes:

dance_g(ana, 1). dance_b(alberto, 0). track_g(ana, 0). track_b(alberto, 1).

dance_g(rosa, 0). dance_b(rafael, 1). track_g(rosa, 0). track_b(rafael, 0).

dance_g(julia, 1). dance_b(mauro, 1). track_g(julia, 1). track_b(mauro, 1).

dance_g(teresa, 0). dance_b(jose, 0). track_g(teresa, 1). track_b(jose, 1).

laugh_g(ana, 1). laugh_b(alberto, 0). play_g(teresa, 1). play_b(jose, 0).

laugh_g(rosa, 1). laugh_b(rafael, 1). play_g(julia, 1). play_b(mauro, 1).

laugh_g(julia, 0). laugh_b(mauro, 1). play_g(rosa, 1). play_b(rafael, 0).

laugh_g(teresa, 0). laugh_b(jose, 0). play_g(ana, 0). play_b(alberto, 0).

Escreva um predicado sweetheart(B, G) que seja verdade quando a moça G for o melhor par para o
rapaz B. O melhor par é definido pela quantidade de interesses em comum. Por exemplo, o melhor par
para jose é teresa, pois ambos não gostam de dançar, gostam de caminhar, e não gostam de rir. A
única divergência entre eles acontece no predicado play: a menina, nesse caso, é brincalhona, e o rapaz
é sério. Assim, considerando o banco de predicados visto logo acima, teŕıamos as seguintes buscas:

?- sweetheart(jose, X). ?- sweetheart(rafael, X).

X = teresa ; X = ana ;

?- sweetheart(mauro, X). ?- sweetheart(alberto, X).

X = julia ; X = teresa ;

Note que o seu predicado deve ser geral o suficiente para lidar com outros bancos de verdades, além
desse visto como exemplo. Finalmente, em caso de empate, isto é, se houver duas moças com a mesma
quantidade de afinidades por um rapaz, seu predicado pode usar qualquer uma delas.

5

5. (10 Pontos) Várias linguagens utilizam o conceito de classe para implementar tipos abstratos de dados.
Algumas dessas linguagens, inclusive, provêem uma noção muito flex́ıvel de classe. Por exemplo, em
Python classes são valores de primeira ordem, que podem ser modificados em tempo de execução
por exemplo. Essa capacidade é muito útil, pois é posśıvel estender-se um programa em direções
muito diferentes daquela que motivou o projeto original daquele código. Por exemplo, abaixo vemos
dois módulos implementados em Python. O primeiro, que define algumas formas geométricas, está
no arquivo shapes.py. O segundo arquivo, uses shapes.py, usa aquelas formas. Porém, as nossas
formas em shapes.py não possuem o método area. Portanto elas não respeitam o contrato exigido
pelo método get volume by height em uses shapes.py.

class Circle:
 def __init__(self, radius):
 self.radius = radius

class Rectangle:
 def __init__(self, width, height):
 self.width = width
 self.height = height

class Composite:
 def __init__(self):
 self.elements = []
 def add(self, shape):
 self.elements.append(shape)

shapes.py
from shapes import Circle,
Rectangle, Composite

def get_volume_by_height(shape, height):
 return shape.area() * height

c = Circle(4.0)
r = Rectangle(3.0, 5.0)
e = Composite()
e.add(c)
e.add(r)

print get_volume_by_height(c, 2.5)
print get_volume_by_height(r, 2.5)
print get_volume_by_height(e, 2.5)

use_shapes.py

Insira o seu código aqui para que o resto
deste módulo funcione corretamente.

Nessa questão você deverá preencher a lacuna em uses shapes.py para que o método get volume by height
funcione corretamente. Note que você não tem acesso ao código fonte em shapes.py.

• A área de um ćırculo é seu raio vezes π.

• A área de um retângulo é sua largura vezes sua altura.

• A área de uma composição (composite) é a soma das áreas de todos os elementos que dela fazem
parte.

6

6. (1 Ponto cada) Considere o programa abaixo, que foi escrito em uma linguagem hipotética, que cha-
maremos de rhyme:

def test (int x) {
a[1] = 6;
e = 2;
x += 3;

}
main() {
a[1] = 1; a[2] = 2; e = 1;
test(a[e]);
print a[1], " ", a[2], " ", e);

}

Preencha a tabela abaixo com os valores impressos de acordo com as diferentes poĺıticas de passagem
de parâmetros:

Elemento a[1] a[2] e

Nome

Valor

Referênica

• (1 Ponto) Dê uma sugestão de como o curso de LP poderia ser melhorado.

7

