Prova Final de Linguagens de Programacao
- DCC024B -
Ciéncia da Computacao

Nome:
“Eu dou minha palavra de honra que nao trapaceei, estou trapaceando, ou trapacearei neste exame.”

Numero de matricula:

As regras do jogo:
e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.

Quando escrever cédigo, a sintaxe correta é importante.

Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

A prova termina uma hora e quarenta minutos apds seu inicio. O instrutor avisara quando faltarem
somente 15 minutos para o final do exame.

e Seja honesto e lembre-se: vocé deu sua palavra de honra.
Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretagao da questao junto
a resposta.

e Lembre-se da cor dos domingos. E lembre-se também: perguntando qual é a cor dos domingos vocé
perde a sua pergunta.

e A prova nao é dificil, ela é divertida, entao aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Questao 4 | Questao 5 | Questao 6

1. Algumas linguagens de programacao favorecem um estilo de programacao mais voltado as operacoes
algoritmicas que compoem o problema a ser resolvido. SML é um exemplo de linguagem assim. Em
SML é mais natural programarmos de forma top-down: um problema é resolvido por uma fungao
principal, a qual deve ser expandida em varias sub-rotinas. Esse processo continua até que cada uma
das sub-rotinas tenha sido implementada. Outras linguagens favorecem um estilo de programacao
mais voltado aos tipos de dados. Nessas linguagens as operacoes sao parte dos tipos. Dados, nesse
caso, “sabem”executar as agoes. O desenvolvimento tende, entao, a ser visto de forma bottom-up: o
programa consiste em um conjunto de médulos. Cada mddulo define um tipo, e cada tipo define as
operagoes que ele sabe realizar. E claro que essa dimensao de classificagao de linguagens: orientada a
operagoes ou orientada a objetos nao é rigida. O programador pode desenvolver programas seguindo
uma filosofia, ainda que essa abordagem nao seja a mais natural na linguagem que ele estd usando.
Além disso, algumas linguagens permitem tanto uma forma de desenvolvimento quanto a outra. Temos
assim o espectro abaixo:

s]| | | | [Smatae

Operagdes Objetos
De um lado temos SML, uma linguagem muito voltada as operacoes, e do outro temos Smalltalk, uma
linguagem muito voltada aos objetos.

(a) (1 Pontos) Preencha as caixas acima com as seguintes linguagens: Python, Java e C. A linguagem
mais orientada as operagoes deve estar mais préoxima de SML, e a linguagem mais orientada aos
objetos deve estar mais proxima de Smalltalk.

(b) (3 Pontos) Justifique a sua escolha para Python.

(¢) (3 Pontos) Justifique a sua escolha para Java.

(d) (3 Pontos) Justifique a sua escolha para C.

2. A linguagem assembly logo abaixo é Turing Completa:

(Variaveis) = {v1,v9,...}
— (Atribuicao)
— (Adigao)

— (Armazenamento em memoria)

mov(v1, v2)
add(v1, va2, v3)

stm(vo, v1)

— (Carregamento da memdria) 1dm(v1, vo)
— (Desvio se zero) bzr(v, 1)
— (Desvio incondicional) jmp(1)

Um programa nessa linguagem pode ser descrito por uma tupla de trés elementos: (P,pc,X). P é um
arranjo contendo instrugoes assembly. O inteiro pc é um contador usado para indexar instrucoes em
P. Finalmente, ¥ é uma funcdo que associa nomes de variaveis a valores inteiros. Algumas instrugoes
alteram o valor de pc. Outras alteram Y. Abaixo vemos a semantica natural de trés dessas instrugoes:
add, stm e bzr. A notagdo f[a — b] denota Az.if © = a then b else f(x).

(ADDSEM] Plpc] = add(v1, v2, v3) Ylve] = na Slvg] = n3 = S[vr = (n2 + ng)] (P,pc+1, Z/) -

(P,pc, X)) —

) P[pc] = stmem(vg, v1) Slvo] = @ Svi]l=n ¥ =3[z — n) (P,pc+1,%") - "
[STMSEM] PpeD) o5
» PG, -
(BZRSEM] Plpc] = bzr(v,1) Sv] #0 (P,pc +1,8) — %’
(P,pe,%,0) — %'
Plpc] = bzr(v,1) S]] =0 (P,1,2) — %’

[BNZSEM]

(P,pe, %) — %

(a) (3 Pontos) Escreva a seméntica natural da instrugao mov(vy,v2), que copia o conteido da varidvel
vg para a varidvel v;. Dica: observe a regra ADDSEM logo acima.

(b) (3 Pontos) Escreva a semantica natural da instrugdo ldm(vi,vg), que é equivalente a atribuigao
v1 = *vg. Isto é, essa instrugao lé o conteido de vy, usa esse contetido como um enderego na
memoria Y, e copia o conteudo desse enderego para a varidavel v;. Dica: observe a regra STMSEM
logo acima.

(c¢) (4 Pontos) Escreva a seméantica natural da instrugao jmp(l), que desvia o contador de programas
para o rétulo . Dica: observe as regras BZRSEM e BNZSEM logo acima.

3. Essa questao refere-se aos predicados abaixo, escritos em Prolog.

e([l, L, L).
Q([H|IL1], L2, [HIX]) :- e(L1, L2, X).

rev([]l, [1).
rev([HIT], X) :- @(XX, [H], X), rev(T, XX).

(a) (2 Pontos) Uma das duas buscas a seguir nao termina: (i) rev([1], Q) ou (ii) rev(Q, [1]).
Qual dessas buscas, (i) ou (ii), ndo termina?

(b) (8 Pontos) Justifique a resposta dada acima mostrando a drvore de buscas da query que termina.

4. (10 Pontos) Nessa questao deverd ser desenvolvido em Prolog um sistema experto que encontre pares
entre potenciais casais de namorado. Por simplicidade assumiremos que rapazes e mogas em nosso
mundo podem ter alguns dentre os quatro interesses: dancar, caminhar, rir e brincar. O melhor par
para uma moca € o rapaz com quem ela tem mais interesses em comum. Uma forma de representar
esses interesses é via os predicados abaixo. Nesse exemplo, assumimos que temos cadastrados em nosso
sistema quatro mocgas e quatro rapazes:

dance_g(ana, 1). dance_b(alberto, 0). track_g(ana, 0). track_b(alberto, 1).
dance_g(rosa, 0). dance_b(rafael, 1). track_g(rosa, 0). track_b(rafael, 0).
dance_g(julia, 1). dance_b(mauro, 1). track_g(julia, 1). track_b(mauro, 1).
dance_g(teresa, 0). dance_b(jose, 0). track_g(teresa, 1). track_b(jose, 1).
laugh_g(ana, 1). laugh_b(alberto, 0). play_g(teresa, 1). play_b(jose, 0).
laugh_g(rosa, 1). laugh_b(rafael, 1). play_g(julia, 1). play_b(mauro, 1).
laugh_g(julia, 0). laugh_b(mauro, 1). play_g(rosa, 1). play_b(rafael, 0).
laugh_g(teresa, 0). laugh_b(jose, 0). play_g(ana, 0). play_b(alberto, 0).

Escreva um predicado sweetheart (B, G) que seja verdade quando a mocga G for o melhor par para o
rapaz B. O melhor par é definido pela quantidade de interesses em comum. Por exemplo, o melhor par
para jose é teresa, pois ambos ndo gostam de dangar, gostam de caminhar, e ndo gostam de rir. A
Unica divergéncia entre eles acontece no predicado play: a menina, nesse caso, ¢ brincalhona, e o rapaz
é sério. Assim, considerando o banco de predicados visto logo acima, teriamos as seguintes buscas:

?7- sweetheart(jose, X). ?- sweetheart(rafael, X).
X = teresa ; X = ana ;

?- sweetheart (mauro, X). ?- sweetheart(alberto, X).
X = julia ; X = teresa ;

Note que o seu predicado deve ser geral o suficiente para lidar com outros bancos de verdades, além
desse visto como exemplo. Finalmente, em caso de empate, isto é, se houver duas mocgas com a mesma
quantidade de afinidades por um rapaz, seu predicado pode usar qualquer uma delas.

5. (10 Pontos) Vérias linguagens utilizam o conceito de classe para implementar tipos abstratos de dados.
Algumas dessas linguagens, inclusive, provéem uma nogao muito flexivel de classe. Por exemplo, em
Python classes sao valores de primeira ordem, que podem ser modificados em tempo de execugao
por exemplo. FKEssa capacidade é muito util, pois é possivel estender-se um programa em diregoes
muito diferentes daquela que motivou o projeto original daquele cédigo. Por exemplo, abaixo vemos
dois médulos implementados em Python. O primeiro, que define algumas formas geométricas, estd
no arquivo shapes.py. O segundo arquivo, uses_shapes.py, usa aquelas formas. Porém, as nossas
formas em shapes.py nao possuem o método area. Portanto elas nao respeitam o contrato exigido
pelo método get_volume by height em uses_shapes.py.

_I shapes.py _| use_shapes.py

class Circle: from shapes import Circle,
def _ init_ (self, radius): Rectangle, Composite
self.radius = radius

Insira o seu codigo aqui para que o resto
deste modulo funcione corretamente.

class Rectangle:

def _ init_ (self, width, height): def get volume by height (shape, height):
self.width = width return shape.area() * height
self.height = height

c = Circle(4.0)
class Composite: r = Rectangle (3.0, 5.0)

def _ init_ (self): e = Composite ()
self.elements = [] e.add(c)

def add(self, shape): e.add (r)

self.elements.append (shape)

print get volume by height(c, 2.5)
print get volume by height(r, 2.5)
print get volume by height (e, 2.5)

Nessa questao vocé devera preencher a lacuna em uses_shapes. py para que o método get_volume_by_height
funcione corretamente. Note que vocé nao tem acesso ao cédigo fonte em shapes.py.

e A drea de um circulo é seu raio vezes .
e A drea de um retangulo é sua largura vezes sua altura.

e A drea de uma composicao (composite) é a soma das dreas de todos os elementos que dela fazem
parte.

6. (1 Ponto cada) Considere o programa abaixo, que foi escrito em uma linguagem hipotética, que cha-
maremos de rhyme:

def test (int x) {
al1] = 6;
e = 2;
x += 3;
}
main() {
al1]l = 1; al[2] = 2; e = 1;
test(alel);
print af1l, " ", a[2], " ", e);
}

Preencha a tabela abaixo com os valores impressos de acordo com as diferentes politicas de passagem
de parametros:

Elemento al1] a[2] e

Nome

Valor

Referénica

e (1 Ponto) Dé uma sugestao de como o curso de LP poderia ser melhorado.

