
Prova Final de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1

1. Essa questão refere-se a algumas decisões de projeto que foram tomadas por ocasião da definição da
sintaxe de operadores em SML.

(a) (5 Pontos) Considere a sequência de chamadas logo abaixo:

- foldr (op +) 0 [2,3,4,5,6];
val it = 20 : int

- map not [true, false, true];
val it = [false,true,false] : bool list

- map ~ [2,3,4,5];
val it = [~2,~3,~4,~5] : int list

- map (op *) [(3.1, 2.7), (~3.14, 9.12)];
val it = [8.37,~28.6368] : real list

Por que é necessário prefixar os operadores de adição e multiplicação com o transformador op, e
não é necessário fazer isso com as negações lógica e aritmética?

(b) (5 Pontos) SML é uma linguagem com poucas palavras reservadas. Podemos, por exemplo, sobre-
escrever o operador de adição +:

- infix 3 +;
infix 3 +

- fun op + (a, b) = a - b;
val + = fn : int * int -> int

- 3 + 2;
val it = 1 : int

Curiosamente, as palavras andalso e orelse são reservadas na linguagem. Veja as consequências
dessa decisão:

- foldr (fn(x, y) => x orelse y) false [false, true, false];
val it = true : bool

- foldr (op orelse) false [false, true, false];;
stdIn:9.11-9.18 Error: syntax error: deleting ORELSE RPAREN

Por que foi necessário adortar-se essa decisão que diminui a ortogonalidade da linguagem?

2

2. Os métodos logo abaixo estão implementados em Java. Esta questão refere-se a essas duas imple-
mentações:

public static void alimentaAnimais(Set<Animal> set) {
for (Animal a : set) {
a.eat();

}
}

public static void alimentaCachorros(Set<Cachorro> set) {
for (Cachorro d : set) {
d.eat();

}
}

(a) (4 Pontos) Se assumirmos que a classe Cachorro estende a classe Animal, então qual das im-
plementações acima é melhor? Uma implementação é melhor que a outra quando ela adere de
forma mais clara a bons prinćıpios de programação. Neste caso, pede-se que sejam comparadas
as implementações de alimentaAnimais e de alimentaCachorros. Você deve justificar a sua
resposta.

(b) (6 Pontos) Comparemos agora, as mesmas duas funções, desta vez implementadas em Python:

class Animal: def alimentaAnimais(setAnimal):
def __init__(self, name): for a in setAnimal:
self.name = name a.eat()

def eat(self):
print self.name + " is easting" def alimentaCachorros(setCachorro):

for c in setCachorro:
class Cachorro(Animal): c.eat()
def eat(self):
print self.name + " is eating like a dog"

Do ponto de vista de boas práticas de programação, qual destas funções é a melhor delas, alimentaAnimais
ou alimentaCachorros? Lembre-se de justificar a sua resposta.

3

3. O prinćıpio da substituição de Liskov reza que “em situações em que se espera um tipo T , pode-
se passar um tipo S, se S for subtipo de T”. Esse é um dos prinćıpio mais básicos a nortear a
programação orientada a objetos. Em outras palavras, qualquer linguagem orientada a objetos atende,
de alguma forma, o prinćıpio da substituição de Liskov. Curiosamente, algumas construções que usam
polimorfismo paramétrico são proibidas em Java, ainda que elas aparentemente atendam ao prinćıpio
da substituição. Por exemplo, a atribuição abaixo, na função main, não é permitida pelo compilador
Java, ainda que a classe Dog estenda a classe Animal:

class Animal() {...}

class Dog() extends Animal {...}

main() {
List<Animal> l = new List<Dog>();

}

(a) (8 Pontos) Por que tal atribuição não é permitida pela linguagem Java? Ilustre a sua resposta
com um exemplo de código que não funcionaria corretamente caso a atribuição fosse permitida
pela linguagem.

(b) (2 Pontos) Esse tipo de situação não é um problema na linguagem Python. Porque programa-
dores Python não precisam se preocupar com esse tipo de atribuição entre estruturas de dados
parametrizadas por tipo?

4

4. (10 Pontos) Existe um mecanismo de passagem de parâmetro chamado valor-resultado. Neste sistema,
o valor do parâmetro real é copiado para o parâmetro formal no momento em que uma função é
chamada, tal como se dá na chamada por valor. Finda a execução da função invocada, o valor calculado
no parâmetro formal é copiado de volta para o parâmetro real. A figura abaixo ilustra essa técnica de
passagem de parâmetros. Neste exemplo, serão impressos os valores 14, 3 pelo programa usado como
exemplo, assumindo-se que o parâmetro a da função mad é passado por valor resultado.

void mad(val-res int a, int b, int c) {
 b = b + c;
 a = a * b;
}

void main() {
 int x = 2;
 int y = 3;
 int z = 4;
 mad(x, y, z);
 print("%d, %d\n", x, y);
}

x: 2
main

y: 3

z: 4

mad
a: 2

b: 3

c: 4

x: 14
main

y: 3

z: 4

Chamada Retorno

Cópia ocorre
aqui

A passagem por valor-resultado é bastante parecida com a passagem por referência. Existem, contudo,
diferenças. Nesta questão, você deve escrever um programa, em pseudo-código, que ilustre a diferença
entre a passagem por resultado, e a passagem por referência. Você precisa explicar claramente qual seria
o resultado do programa, se alguns parâmetros fosse passados por referência ou por valor-resultado.

5

5. Nesta questão você deverá implemente, em Prolog, o predicado isWord(L, N, A), que é verdade
sempre que L for uma lista de tamanho N, formada por elementos do alfabeto A. Por exemplo:

?- isWord(L, 3, [0, 1]).
L = [0, 0, 0] ;
L = [0, 0, 1] ;
L = [0, 1, 0] ;
L = [0, 1, 1] ;
L = [1, 0, 0] ;
L = [1, 0, 1] ;
L = [1, 1, 0] ;
L = [1, 1, 1] ;
false.

?- isWord(L, 2, [a, b, c]).
L = [a, a] ;
L = [a, b] ;
L = [a, c] ;
L = [b, a] ;
L = [b, b] ;
L = [b, c] ;
L = [c, a] ;
L = [c, b] ;
L = [c, c] ;
false.

(a) (8 Pontos) Implemente o predicado isWord(L, N, A):

(b) (2 Pontos) Use o predicado findAll, combinador com isWord, para listar todos os números
binários que possuam até três d́ıgitos. Não se preocupe em eliminar zeros a esquerda. Não se
preocupe em perguntar a sintaxe correta de findAll para o instrutor, pois ele não responderá.

6

6. Essa questão refere-se à classe Staff, cuja implementação, em Python, é mostrada logo abaixo:

class Staff:

payroll = {}

def getSalary(self, name):

if self.payroll.has_key(name):

return self.payroll[name]

else:

return 0.0

def addEmp(self, name, salary):

self.payroll[name] = salary

def raiseSalary(self, name, salary):

self.payroll[name] = self.payroll[name] + salary

(a) (3 Pontos) O método getSalary utiliza um valor especial, 0.0 como o salário de um empregado
inexistente. Qual a desvantagem desta forma de tratamento de erros?

(b) (3 Pontos) Crie uma classe de exceções NonExistentEmployee, em Python, para tratar a situação
excepcional de uma busca sobre um empregado inexistente.

(c) (4 Pontos) Modifique o método getSalary para disparar uma exceção do tipo NonExistentEmployee
caso o nome solicitado não possua uma entrada no banco de dados.

7

