Prova Final de Linguagens de Programacao
- DCC024B -
Ciéncia da Computacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:
e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.

Quando escrever cédigo, a sintaxe correta é importante.

Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.
e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e A prova nao ¢ dificil, ela é divertida, entdo aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questdao 1 | Questao 2 | Questao 3 | Questdao 4 | Questao 5 | Questao 6

1. Essa questao refere-se a algumas decistes de projeto que foram tomadas por ocasido da definicao da
sintaxe de operadores em SML.

(a)

(5 Pontos) Considere a sequéncia de chamadas logo abaixo:

- foldr (Op +) 0 [2,3’4:5)6],
val it = 20 : int

- map not [true, false, truel;
val it = [false,true,false] : bool list

- map ~ [2
[

val it = ,73,74,75] : int list

- map (op *) [(3.1, 2.7), (73.14, 9.12)];
val it = [8.37,728.6368] : real list

Por que é necessério prefixar os operadores de adi¢ao e multiplicacao com o transformador op, e
nao é necessario fazer isso com as negacoes logica e aritmética?

(5 Pontos) SML é uma linguagem com poucas palavras reservadas. Podemos, por exemplo, sobre-
escrever o operador de adigao +:

- infix 3 +;

infix 3 +

- fun op + (a, b) = a - b;
val + = fn : int * int -> int

-3+ 2;
val it = 1 : int

Curiosamente, as palavras andalso e orelse sdo reservadas na linguagem. Veja as consequéncias
dessa decisao:

- foldr (fn(x, y) => x orelse y) false [false, true, false];
val it = true : bool

- foldr (op orelse) false [false, true, falsel;;
stdIn:9.11-9.18 Error: syntax error: deleting ORELSE RPAREN

Por que foi necessario adortar-se essa decisao que diminui a ortogonalidade da linguagem?

2. Os métodos logo abaixo estdo implementados em Java. Esta questao refere-se a essas duas imple-
mentacoes:

public static void alimentaAnimais(Set<Animal> set) {
for (Animal a : set) {
a.eat();
}
}

public static void alimentaCachorros(Set<Cachorro> set) {
for (Cachorro d : set) {
d.eat();
}
}

(a) (4 Pontos) Se assumirmos que a classe Cachorro estende a classe Animal, entdo qual das im-
plementacoes acima é melhor? Uma implementacao é melhor que a outra quando ela adere de
forma mais clara a bons principios de programagao. Neste caso, pede-se que sejam comparadas
as implementagoes de alimentaAnimais e de alimentaCachorros. Vocé deve justificar a sua
resposta.

(b) (6 Pontos) Comparemos agora, as mesmas duas fungoes, desta vez implementadas em Python:

class Animal: def alimentaAnimais(setAnimal):
def __init__(self, name): for a in setAnimal:
self.name = name a.eat()
def eat(self):
print self.name + " is easting" def alimentaCachorros(setCachorro):
for ¢ in setCachorro:
class Cachorro(Animal): c.eat()

def eat(self):
print self.name + " is eating like a dog"

Do ponto de vista de boas préticas de programacao, qual destas fungoes é a melhor delas, alimentaAnimais
ou alimentaCachorros? Lembre-se de justificar a sua resposta.

3. O principio da substituicao de Liskov reza que “em situacGes em que se espera um tipo T, pode-
se passar um tipo S, se S for subtipo de T”. Esse é um dos principio mais bésicos a nortear a
programagcao orientada a objetos. Em outras palavras, qualquer linguagem orientada a objetos atende,
de alguma forma, o principio da substituicao de Liskov. Curiosamente, algumas construgoes que usam
polimorfismo paramétrico sdo proibidas em Java, ainda que elas aparentemente atendam ao principio
da substituicdo. Por exemplo, a atribuicao abaixo, na fungdo main, nao é permitida pelo compilador
Java, ainda que a classe Dog estenda a classe Animal:

class Animal() {...}
class Dog() extends Animal {...}

main() {
List<Animal> 1 = new List<Dog>();

3

(a) (8 Pontos) Por que tal atribui¢do néo é permitida pela linguagem Java? Ilustre a sua resposta
com um exemplo de cédigo que nao funcionaria corretamente caso a atribuicao fosse permitida
pela linguagem.

(b) (2 Pontos) Esse tipo de situagdo nao é um problema na linguagem Python. Porque programa-
dores Python nao precisam se preocupar com esse tipo de atribuigao entre estruturas de dados
parametrizadas por tipo?

4. (10 Pontos) Existe um mecanismo de passagem de parametro chamado valor-resultado. Neste sistema,
o valor do parametro real é copiado para o parametro formal no momento em que uma fungao é
chamada, tal como se d4 na chamada por valor. Finda a execugao da fungao invocada, o valor calculado
no parametro formal é copiado de volta para o parametro real. A figura abaixo ilustra essa técnica de
passagem de parametros. Neste exemplo, serao impressos os valores 14, 3 pelo programa usado como
exemplo, assumindo-se que o parametro a da func¢ao mad é passado por valor resultado.

void mad(val-res int a, int b, int c) {
b=Db+ c;
a

= a * b.
} ' main Chamada mad main

void main() { == fF """ "
intx=2; JTva: - I+v3 L_______

int y = 3; -

. _ . . Copia ocorre_ [T~
int z = 4; aqui
mad(x, Y, 2);

print("%d, %d\n", x, y);

A passagem por valor-resultado é bastante parecida com a passagem por referéncia. Existem, contudo,
diferencas. Nesta questao, vocé deve escrever um programa, em pseudo-cddigo, que ilustre a diferenca
entre a passagem por resultado, e a passagem por referéncia. Vocé precisa explicar claramente qual seria
o resultado do programa, se alguns parametros fosse passados por referéncia ou por valor-resultado.

5. Nesta questao vocé devera implemente, em Prolog, o predicado isWord(L, N, A), que é verdade
sempre que L for uma lista de tamanho N, formada por elementos do alfabeto A. Por exemplo:

?- isWord(L, 3, [0, 11).

L = [0, 0, 0] ;
L = [0, 0, 1] ;
L =1[0, 1, 0] ;
L =1[0, 1, 1] ;
L =1[1, 0, 0] ;
L =1[1, 0, 1] ;
L=1[1, 1, 0] ;
L=1[1,1, 1] ;
false

?- isWord(L, 2, [a, b, c]).
L = [a, a] ;
= [a, b] ;
= [a, c] ;
= [b, a] ;
= [b, b] ;
= [b, c] ;
= [c, al ;
= [c, bl ;
= [c, cl ;
false.

=

| o e o e o

(a) (8 Pontos) Implemente o predicado isWord(L, N, A):

(b) (2 Pontos) Use o predicado findAll, combinador com isWord, para listar todos os nimeros
bindrios que possuam até trés digitos. Nao se preocupe em eliminar zeros a esquerda. Nao se
preocupe em perguntar a sintaxe correta de £indA11l para o instrutor, pois ele nao respondera.

6. Essa questao refere-se a classe Staff, cuja implementacao, em Python, é mostrada logo abaixo:

class Staff:
payroll = {}
def getSalary(self, name):
if self.payroll.has_key(name):
return self.payroll[name]
else:
return 0.0
def addEmp(self, name, salary):
self .payroll[name] = salary
def raiseSalary(self, name, salary):
self.payroll[name] = self.payroll[name] + salary

(a) (3 Pontos) O método getSalary utiliza um valor especial, 0.0 como o saldrio de um empregado
inexistente. Qual a desvantagem desta forma de tratamento de erros?

(b) (3 Pontos) Crie uma classe de excegoes NonExistentEmployee, em Python, para tratar a situagio

excepcional de uma busca sobre um empregado inexistente.

(¢) (4 Pontos) Modifique o método getSalary para disparar uma excecao do tipo NonExistentEmployee
caso o nome solicitado nao possua uma entrada no banco de dados.

