Prova Final de Linguagens de Programacao
- DCC024B -
Sistemas de Informacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:

e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.
e Quando escrever cédigo, a sintaxe correta é importante.

e Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.
Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e Serao avaliadas as seis melhores respostas. Entao sinta-se livre para abandonar alguma questao devido
ao tempo.

e A prova nao é dificil, ela é divertida, entdo aproveite!

Tabela 1: Pontos acumulados

Questao 1 | Questao 2 | Questdo 3 | Questdo 4 | Questao 5 | Questdo 6 | Questdao 7

1. Aslinguagens de programacao podem ser divididas em dois grupos principais: as linguagens imperativas
e as linguagens declarativas.

(a) (4 pontos) Algumas linguagens favorecem a programagao declarativa, enquanto outras favorecem
a programagcao imperativa. Por outro lado, pode-se programar declarativamente ou imperativa-
mente na maioria das linguagens de programacao. Escolha um certo algoritmo, com o qual vocé
esteja familiar, e o escreva em pseudo-cddigo, de forma imperativa e declarativa.

(b) (3 pontos) Descreva uma vantagem da abordagem declarativa sobre a abordagem imperativa. Nao
é preciso ater-se ao exemplo da questao anterior.

(¢) (3 pontos) Agora faca o oposto: mostre uma vantagem da abordagem imperativa sobre a sua
contra-parte declarativa.

2. Esta questao refere-se a passagem de parametros por nome. FEste método causa a avaliacao do
parametro real sempre, e somente se, ele for utilizado no corpo da fungao chamada.

(a) (5 pontos) Para evitar a captura de varidveis, um fen6meno que ocorre na passagem de parametros
por expansao de macros, a avaliacao do parametro formal, na passagem por nomes, utiliza o con-
texto do chamador. Escreva um programa, em pseudo-cédigo, que retornaria resultados diferentes,
dependendo do método de chamada ser expansao de macros ou passagem por nome.

(b) (5 pontos) A passagem por nomes difere da avaliacio preguigosa por que esta tdltima utiliza
um cache para evitar a miltipla avaliacao de pardmetros. Escreva um programa, em pseudo-
codigo, que mostre de forma irrefutdvel a diferenca entre estes dois mecanismos de passagem de
parametros.

3. (10 pontos) Considere o seguinte programa, implementado em SML:

exception NegArgumentException of int;
exception PrecisionException of int * int;
val PRECISION = 1073741823
fun fact 0 =1
| fact n = n * fact (n - 1)
fun factEx n = if n < 0
then raise NegArgumentException n
else if n > 12
then raise PrecisionException (n, PRECISION)
else fact n

fun useFact n =
"Answer = " " Int.toString (factEx n)
handle NegArgumentException n =>
"Argument is negative: " = Int.toString n
handle PrecisionException (n, maxInt) =>
"Fact of " ~ Int.toString n ~ " bigger than " ~ Int.toString maxInt

Implemente este programa em Java. A sua implementacdo deve ser fiel a seméntica do programa
original tanto quanto possivel, em particular, ela deve tratar os dois possiveis tipos de excegoes.

4. (2 pontos por questao) Para cada predicado abaixo, informe sua complexidade assimptdtica, em termos
de tempo de execugao e espago ocupado na pilha de registros de ativacao. A complexidade deve ser
informada de forma nao ambigua; por exemplo: “a fungao é cubica no nimero de elementos de seu
primeiro parametro”.

e hd([H|_], H).

e append([],X,X).
append([Head|Taill, X, [Head|Suffix]) :- append(Tail, X, Suffix).

e reverse([],[1).
reverse([Head|Taill ,Rev)
:- reverse(Tail,TailRev), append(TailRev, [Head],Rev).

e reverse(X,Y) :- rev(X,[],Y).
rev([],Sofar,Sofar).
rev([Head|Taill ,Sofar,Rev)

:— rev(Tail, [Head|Sofar],Rev).

e xequals([], [1).
xequals([H1|T1], [H2|T2]) :- H1 = H2, xequals(T1, T2).

5. Considere o programa Java abaixo. Nas cinco préximas perguntas, as respostas possiveis sao:

“ b2

e Serd impresso
e O programa nao sera compilado.

e Ocorrera uma falha em tempo de execugao.

1 class Animal { void eat() { System.out.println("Animal eats."); } }
2 class Fish extends Animal {

3 void eat() { System.out.println("Fish eats."); }

4 void swim() { System.out.println("Fish swims."); }

5 %

6 class Shark extends Fish { void eat() { System.out.println("Shark eats."); } }
7 public class Dispatch {

8 public static void main(String args[]) {

9 Animal a = new Fish();

10 Fish f = new Shark();

11 a.eat();

12 a.swim();

13 f.eat();

14 f.swim();

15 Shark s = (Shark)f;

16 s.eat();

15 X

16 }

(a) (1 ponto) O que acontecera na linha 117

(b) (1 ponto) O que acontecerd na linha 127

(¢) (1 ponto) O que acontecera na linha 137

(d) (1 ponto) O que acontecerd na linha 147

(e) (1 ponto) O que acontecera na linha 167

(f) (5 pontos) Desenhe as tabelas virtuais dos objetos a, £ e s imediatamente depois da execucao
da linha 14 do programa. Mostre, com setas, quais métodos sao apontados por cada entrada da
tabela.

6. (10 pontos) Duas strings sdo anagramas quando elas sido formadas pelos mesmos caracteres, nao neces-
sariamente na mesma ordem. Implemente o predicado solve(S, A), que é verdade quando os dtomos
S e A sao anagramas. Por exemplo:

?- solve(ana, naa).
true.

?- solve(ana, nab).
false.

?- solve(ana, nnaa).
false.

Neste exercicio talvez vocé queira usar o predicado name (A, L), que é verdade quando L é a lista de
caracteres ASCII que forma o 4tomo A. Por exemplo:

?- name(abc, L).
L = [97, 98, 99].

7. (10 pontos) Costuma-se dizer que Java é uma linguagem orientada por objetos, porém, a orientagéo
por objetos, enquanto uma filosofia de desenvolvimento de software, ¢ muito mais uma caracteristica
do programa, que da linguagem de programacao. Considere, por exemplo, o programa abaixo. Este
programa, embora escrito em Java, nao segue qualquer principio de codificacao orientado por objetos.
Neste exercicio vocé deve re-escrever o programa para que ele seja mais “orientado por objetos”.

class Node { String data; Node link; }
class Stack { Node top; }
public class Controller {
public static void add(Stack s, String data) {

Node n = new Node();
n.data = data;
n.link = s.top;
s.top = n;

}

public static boolean hasMore(Stack s)
{ return s.top != null; }
public static String remove(Stack s) {
Node n = s.top;
s.top = n.link;
return n.data;
}
}
public class Main {
public static void main(String args[]) {
Stack s = new Stack();
Controller.add(s, "AA");
Controller.add(s, "BB");
while (Controller.hasMore(s)) {
String out = Controller.remove(s);
System.out.println(out);
}
}
}

