
Prova Final de Linguagens de Programação
- DCC024B -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Serão avaliadas as seis melhores respostas. Então sinta-se livre para abandonar alguma questão devido
ao tempo.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7

1

1. As linguagens de programação podem ser divididas em dois grupos principais: as linguagens imperativas
e as linguagens declarativas.

(a) (4 pontos) Algumas linguagens favorecem a programação declarativa, enquanto outras favorecem
a programação imperativa. Por outro lado, pode-se programar declarativamente ou imperativa-
mente na maioria das linguagens de programação. Escolha um certo algoritmo, com o qual você
esteja familiar, e o escreva em pseudo-código, de forma imperativa e declarativa.

(b) (3 pontos) Descreva uma vantagem da abordagem declarativa sobre a abordagem imperativa. Não
é preciso ater-se ao exemplo da questão anterior.

(c) (3 pontos) Agora faça o oposto: mostre uma vantagem da abordagem imperativa sobre a sua
contra-parte declarativa.

2

2. Esta questão refere-se à passagem de parâmetros por nome. Este método causa a avaliação do
parâmetro real sempre, e somente se, ele for utilizado no corpo da função chamada.

(a) (5 pontos) Para evitar a captura de variáveis, um fenômeno que ocorre na passagem de parâmetros
por expansão de macros, a avaliação do parâmetro formal, na passagem por nomes, utiliza o con-
texto do chamador. Escreva um programa, em pseudo-código, que retornaria resultados diferentes,
dependendo do método de chamada ser expansão de macros ou passagem por nome.

(b) (5 pontos) A passagem por nomes difere da avaliação preguiçosa por que esta última utiliza
um cache para evitar a múltipla avaliação de parâmetros. Escreva um programa, em pseudo-
código, que mostre de forma irrefutável a diferença entre estes dois mecanismos de passagem de
parâmetros.

3

3. (10 pontos) Considere o seguinte programa, implementado em SML:

exception NegArgumentException of int;
exception PrecisionException of int * int;
val PRECISION = 1073741823
fun fact 0 = 1
| fact n = n * fact (n - 1)

fun factEx n = if n < 0
then raise NegArgumentException n
else if n > 12

then raise PrecisionException (n, PRECISION)
else fact n

fun useFact n =
"Answer = " ^ Int.toString (factEx n)
handle NegArgumentException n =>
"Argument is negative: " ^ Int.toString n

handle PrecisionException (n, maxInt) =>
"Fact of " ^ Int.toString n ^ " bigger than " ^ Int.toString maxInt

Implemente este programa em Java. A sua implementação deve ser fiel à semântica do programa
original tanto quanto posśıvel, em particular, ela deve tratar os dois posśıveis tipos de exceções.

4

4. (2 pontos por questão) Para cada predicado abaixo, informe sua complexidade assimptótica, em termos
de tempo de execução e espaço ocupado na pilha de registros de ativação. A complexidade deve ser
informada de forma não amb́ıgua; por exemplo: “a função é cúbica no número de elementos de seu
primeiro parâmetro”.

• hd([H|_], H).

• append([],X,X).
append([Head|Tail], X, [Head|Suffix]) :- append(Tail, X, Suffix).

• reverse([],[]).
reverse([Head|Tail],Rev)
:- reverse(Tail,TailRev), append(TailRev,[Head],Rev).

• reverse(X,Y) :- rev(X,[],Y).
rev([],Sofar,Sofar).
rev([Head|Tail],Sofar,Rev)
:- rev(Tail,[Head|Sofar],Rev).

• xequals([], []).
xequals([H1|T1], [H2|T2]) :- H1 = H2, xequals(T1, T2).

5

5. Considere o programa Java abaixo. Nas cinco próximas perguntas, as respostas posśıveis são:

• Será impresso “. . .”.

• O programa não será compilado.

• Ocorrerá uma falha em tempo de execução.

1 class Animal { void eat() { System.out.println("Animal eats."); } }

2 class Fish extends Animal {

3 void eat() { System.out.println("Fish eats."); }

4 void swim() { System.out.println("Fish swims."); }

5 }

6 class Shark extends Fish { void eat() { System.out.println("Shark eats."); } }

7 public class Dispatch {

8 public static void main(String args[]) {

9 Animal a = new Fish();

10 Fish f = new Shark();

11 a.eat();

12 a.swim();

13 f.eat();

14 f.swim();

15 Shark s = (Shark)f;

16 s.eat();

15 }

16 }

(a) (1 ponto) O que acontecerá na linha 11?

(b) (1 ponto) O que acontecerá na linha 12?

(c) (1 ponto) O que acontecerá na linha 13?

(d) (1 ponto) O que acontecerá na linha 14?

(e) (1 ponto) O que acontecerá na linha 16?

(f) (5 pontos) Desenhe as tabelas virtuais dos objetos a, f e s imediatamente depois da execução
da linha 14 do programa. Mostre, com setas, quais métodos são apontados por cada entrada da
tabela.

6

6. (10 pontos) Duas strings são anagramas quando elas são formadas pelos mesmos caracteres, não neces-
sariamente na mesma ordem. Implemente o predicado solve(S, A), que é verdade quando os átomos
S e A são anagramas. Por exemplo:

?- solve(ana, naa).
true.

?- solve(ana, nab).
false.

?- solve(ana, nnaa).
false.

Neste exerćıcio talvez você queira usar o predicado name(A, L), que é verdade quando L é a lista de
caracteres ASCII que forma o átomo A. Por exemplo:

?- name(abc, L).
L = [97, 98, 99].

7

7. (10 pontos) Costuma-se dizer que Java é uma linguagem orientada por objetos, porém, a orientação
por objetos, enquanto uma filosofia de desenvolvimento de software, é muito mais uma caracteŕıstica
do programa, que da linguagem de programação. Considere, por exemplo, o programa abaixo. Este
programa, embora escrito em Java, não segue qualquer prinćıpio de codificação orientado por objetos.
Neste exerćıcio você deve re-escrever o programa para que ele seja mais “orientado por objetos”.

class Node { String data; Node link; }

class Stack { Node top; }

public class Controller {

public static void add(Stack s, String data) {

Node n = new Node();

n.data = data;

n.link = s.top;

s.top = n;

}

public static boolean hasMore(Stack s)

{ return s.top != null; }

public static String remove(Stack s) {

Node n = s.top;

s.top = n.link;

return n.data;

}

}

public class Main {

public static void main(String args[]) {

Stack s = new Stack();

Controller.add(s, "AA");

Controller.add(s, "BB");

while (Controller.hasMore(s)) {

String out = Controller.remove(s);

System.out.println(out);

}

}

}

8

