
Prova Final de Linguagens de Programação
- DCC024B -

Ciência da Computação

Ao concordar participar da prova, você dá sua palavra de honra que suas respostas são fruto
único do seu trabalho. Você pode consultar a internet, por exemplo, mas não pode consultar
outros seres vivos para fazer a prova.

As regras do jogo:

• Você pode consultar entidades inanimadas, mas não pode consultar entidades animadas.

• Você precisa enviar três arquivos para fernando@dcc.ufmg.br até as 15h00 do dia 28 de Novembro, a
saber:

– sol.sml: solução da questão 1.

– sol.py: solução da questão 2.

– sol.pl: solução da questão 3.

• Seu e-mail deve ter o t́ıtulo Prova DCC024. Não use qualquer outro t́ıtulo.

• O único texto no corpo de seu e-mail deve ser seu nome, e, possivelmente, a resposta da questão extra.
Não escreva o código dos arquivos no e-mail: envie os arquivos como anexos.

• Caso você queira reenviar suas respostas, simplesmente responda a mensagem de seu e-mail anterior.
Não envie e-mails separados!

• Não há como tirar dúvidas durante a prova. Lembre-se da cláusula sobre entidades animadas. Isso
inclui escrever e-mails para o instrutor.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Extra 0.5

Questão extra (0.5): a figura abaixo representa uma situação extrema. Que situação é esta?

1

1. Considere a seguinte definição de números naturais, implementada como um tipo algébrico em SML:

datatype nat = ZERO | SUCC of nat

(a) (3 Pontos) Escreva uma função nat2int em SML, cujo tipo seja nat -> int. Essa função trans-
forma um número natural em um inteiro em SML:

- nat2int ZERO;

val it = 0 : int

- nat2int (SUCC (SUCC ZERO));

val it = 2 : int

(b) (3 Pontos) Implemente uma função plus, cujo tipo é: nat -> nat -> nat. Essa função recebe
dois naturais, e retorna o natural equivalente à soma das entradas. Por exemplo:

- plus (SUCC(SUCC ZERO)) (SUCC(SUCC(SUCC ZERO)));

val it = SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))) : nat

- plus ZERO (SUCC(SUCC(SUCC ZERO)));

val it = SUCC (SUCC (SUCC ZERO)) : nat

- plus (SUCC(SUCC(SUCC ZERO))) ZERO;

val it = SUCC (SUCC (SUCC ZERO)) : nat

- plus (plus (SUCC ZERO) (SUCC ZERO)) (SUCC ZERO);

val it = SUCC (SUCC (SUCC ZERO)) : nat

Ps. você precisa operar com o tipo nat diretamente. Não é permitido converter naturais para
inteiros, operar com os inteiros, e então fazer a conversão de inteiros para naturais.

(c) (4 Pontos) Implemente uma função mul, cujo tipo é: nat -> nat -> nat. Essa função recebe
dois naturais, e retorna o natural equivalente ao produto das entradas. Por exemplo:

- nat2int (mul (SUCC (SUCC ZERO)) (SUCC (SUCC (SUCC ZERO))));

val it = 6 : int

- nat2int (mul (SUCC (SUCC ZERO)) (plus (SUCC ZERO) (SUCC ZERO)));

val it = 4 : int

2

2. Nesta questão você deverá utilizar a mesma definição de números naturais vista anteriormente, mas
desta vez, nós a faremos em Python, a partir das seguintes classes1:

class Zero:

def __init__(self):

pass

class Succ:

def __init__(self, n):

self.num = n

(a) (3 Pontos) Implemente a função nat2int, que transforma um número natural em um inteiro:

>>> nat2int(Zero())

0

>>> nat2int(Succ(Zero()))

1

(b) (3 Pontos) Adicione um método str (self), a ambas as classes. Esse método deve imprimir
um número natural no formato s...sz, havendo um número de caracteres s igual ao valor do
número:

>>> n1 = Succ(Succ(Zero()))

>>> print n1

ssz

>>> n2 = Zero()

>>> print n2

z

>>> n3 = Succ(Succ(Succ(Succ(Zero()))))

>>> print n1, n2, n3

ssz z ssssz

(c) (4 Pontos) Implemente uma função repeated(L), que recebe uma lista L, e retorne True caso haja
dois números naturais iguais em L. Caso haja referências para objetos que não sejam números
naturais, então sua função deve produzir algum tipo de erro. Por exemplo:

>>> execfile(’sol.py’)

>>> n0 = Succ(Zero())

>>> n1 = Succ(Succ(Zero()))

>>> L0 = [n0, n1, n0]

>>> repeated(L0)

True

>>> L1 = [n0, n1, Succ(Zero())]

>>> repeated(L1)

True

>>> L2 = [n0, n1, 2]

>>> repeated(L2)

Traceback (most recent call last):

Comentário: houve um erro, log, qualquer coisa pode ser impressa aqui.

1Fique à vontade para adicionar quaisquer métodos auxiliares às classes Zero e Succ.

3

3. A noção de número natural pode ser escrita em Prolog facilmente:

num(zero).

num(succ(N)) :- num(N).

(a) (3 Pontos) Implemente o predicado repeated(L). Este predicado é verdadeiro se L for uma lista
que contenha dois números iguais:

?- repeated([zero, succ(zero), zero]).

true ;

true ;

false.

?- repeated([1, 2, 1]).

false.

?- repeated([zero, succ(zero)]).

false.

?- repeated([zero, zero]).

true ;

true ;

false.

(b) (3 Pontos) Implemente o predicado plus(N0, N1, N2), que seja verdade caso N2 seja o natural
correspondente a soma de N0 e N1. Por exemplo:

?- plus(zero, succ(zero), N).

N = succ(zero).

?- plus(succ(zero), succ(zero), N).

N = succ(succ(zero)).

?- plus(succ(zero), N, succ(succ(succ(zero)))).

N = succ(succ(zero)).

(c) (4 Pontos) Implemente um predicado all sums(N, L), que seja verdade se L for a lista de pares
(N0, N1), sendo que a soma de N0 e N1 é N. Por exemplo:

?- all_sums(succ(succ(zero)), L).

L = [(zero, succ(succ(zero))), (succ(zero), succ(zero)), (succ(succ(zero)), zero)].

?- all_sums(succ(succ(succ(zero))), L).

L = [(zero, succ(succ(succ(zero)))), (succ(zero), succ(succ(zero))),

(succ(succ(zero)), succ(zero)), (succ(succ(succ(zero))), zero)].

?- all_sums(succ(zero), L).

L = [(zero, succ(zero)), (succ(zero), zero)].

?- all_sums(zero, L).

L = [(zero, zero)].

4

