Prova Final de Linguagens de Programacao
- DCC024B -
Ciéncia da Computacao

Ao concordar participar da prova, vocé da sua palavra de honra que suas respostas sao fruto
tnico do seu trabalho. Vocé pode consultar a internet, por exemplo, mas nao pode consultar
outros seres vivos para fazer a prova.

As regras do jogo:
e Vocé pode consultar entidades inanimadas, mas nao pode consultar entidades animadas.

e Voceé precisa enviar trés arquivos para fernando@dcc.ufmg.br até as 15h00 do dia 28 de Novembro, a
saber:

— sol.sml: solucao da questao 1.
— sol.py: solugao da questao 2.

— sol.pl: solucao da questao 3.

e Seu e-mail deve ter o titulo Prova_DCC024. Nao use qualquer outro titulo.

e O tnico texto no corpo de seu e-mail deve ser seu nome, e, possivelmente, a resposta da questao extra.
Nao escreva o cddigo dos arquivos no e-mail: envie os arquivos como anexos.

e Caso vocé queira reenviar suas respostas, simplesmente responda a mensagem de seu e-mail anterior.
Nao envie e-mails separados!

e Nao ha como tirar dividas durante a prova. Lembre-se da clausula sobre entidades animadas. Isso
inclui escrever e-mails para o instrutor.

e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Extra 0.5

Questao extra (0.5): a figura abaixo representa uma situacao extrema. Que situagao é esta?

1. Considere a seguinte defini¢do de niimeros naturais, implementada como um tipo algébrico em SML:

datatype nat = ZERO | SUCC of nat

(a)

(3 Pontos) Escreva uma fung¢do nat2int em SML, cujo tipo seja nat -> int. Essa fungio trans-
forma um nimero natural em um inteiro em SML:

- nat2int ZERO;
val it = 0 : int

- nat2int (SUCC (SUCC ZER0));
val it = 2 : int

(3 Pontos) Implemente uma fungao plus, cujo tipo é: nat -> nat -> nat. Essa fungdo recebe
dois naturais, e retorna o natural equivalente a soma das entradas. Por exemplo:

- plus (SUCC(SUCC ZERQ)) (SUCC(SUCC(SUCC ZERQD)));
val it = SUCC (SUCC (SUCC (SUCC (SUCC ZERD)))) : nat

- plus ZERO (SUCC(SUCC(SUCC ZEROD)));
val it = SUCC (SUCC (SUCC ZER0)) : nat

- plus (SUCC(SUCC(SUCC ZERO))) ZERO;
val it = SUCC (SUCC (SUCC ZERO)) : nat

- plus (plus (SUCC ZERQO) (SUCC ZER0)) (SUCC ZERD);
val it = SUCC (SUCC (SUCC ZERO)) : nat

Ps. vocé precisa operar com o tipo nat diretamente. Nao é permitido converter naturais para
inteiros, operar com os inteiros, e entao fazer a conversao de inteiros para naturais.
(4 Pontos) Implemente uma funcdo mul, cujo tipo é: nat -> nat -> nat. Essa funcdo recebe

dois naturais, e retorna o natural equivalente ao produto das entradas. Por exemplo:

- nat2int (mul (SUCC (SUCC ZERO)) (SUCC (SUCC (SUCC ZERQ))));
val it = 6 : int

- nat2int (mul (SUCC (SUCC ZERO)) (plus (SUCC ZERO) (SUCC ZEROQ)));
val it = 4 : int

2. Nesta questao vocé deverd utilizar a mesma definicao de nimeros naturais vista anteriormente, mas
desta vez, nés a faremos em Python, a partir das seguintes classes':

class Zero:
def __init__(self):
pass

class Succ:
def init__(self, n):

self.num = n

(a) (3 Pontos) Implemente a fun¢do nat2int, que transforma um nimero natural em um inteiro:

>>> nat2int (Zero())

0

>>> nat2int (Succ(Zero()))
1

(b) (3 Pontos) Adicione um método __str__(self), a ambas as classes. Esse método deve imprimir
um numero natural no formato s...sz, havendo um numero de caracteres s igual ao valor do
nimero:

>>> nl = Succ(Succ(Zero()))

>>> print nl

ssz

>>> n2 = Zero()

>>> print n2

z

>>> n3 = Succ(Succ(Succ(Succ(Zero()))))
>>> print nl, n2, n3

Ssz z ssssz

(¢) (4 Pontos) Implemente uma fungéo repeated (L), que recebe uma lista L, e retorne True caso haja
dois ntmeros naturais iguais em L. Caso haja referéncias para objetos que nao sejam nimeros
naturais, entao sua funcao deve produzir algum tipo de erro. Por exemplo:

>>> execfile(’sol.py’)

>>> n0 = Succ(Zero())

>>> n1 = Succ(Succ(Zero()))

>>> L0 = [n0, n1, nO]

>>> repeated(LO)

True

>>> L1 = [n0, nl, Succ(Zero())]
>>> repeated(L1)

True

>>> L2 = [n0, nl, 2]

>>> repeated(L2)

Traceback (most recent call last):
Comentdrio: houve um erro, log, qualquer coisa pode ser impressa aqui.

1Fique & vontade para adicionar quaisquer métodos auxiliares as classes Zero e Succ.

3. A nogao de numero natural pode ser escrita em Prolog facilmente:

num(zero) .
num(succ(N)) :- num(N).

(a)

(3 Pontos) Implemente o predicado repeated(L). Este predicado é verdadeiro se L for uma lista
que contenha dois niimeros iguais:

7- repeated([zero, succ(zero), zero]l).
true ;
true ;
false.

?- repeated([1, 2, 1]).
false.

?7- repeated([zero, succ(zero)]).
false.

?7- repeated([zero, zero]).
true ;
true ;
false.

(3 Pontos) Implemente o predicado plus(NO, N1, N2), que seja verdade caso N2 seja o natural
correspondente a soma de NO e N1. Por exemplo:

?7- plus(zero, succ(zero), N).
N = succ(zero).

?7- plus(succ(zero), succ(zero), N).
N = succ(succ(zero)).

7- plus(succ(zero), N, succ(succ(succ(zero)))).
N = succ(succ(zero)).

(4 Pontos) Implemente um predicado all_sums (N, L), que seja verdade se L for a lista de pares
(NO, N1), sendo que a soma de NO e N1 é N. Por exemplo:

?7- all_sums(succ(succ(zero)), L).
L = [(zero, succ(succ(zero))), (succ(zero), succ(zero)), (succ(succ(zero)), zero)].

?- all_sums(succ(succ(succ(zero))), L).
L = [(zero, succ(succ(succ(zero)))), (succ(zero), succ(succ(zero))),
(succ(succ(zero)), succ(zero)), (succ(succ(succ(zero))), zero)].

?- all_sums(succ(zero), L).
L = [(zero, succ(zero)), (succ(zero), zero)].

?- all_sums(zero, L).
L = [(zero, zero)].

