
Prova Final de Linguagens de Programação
- DCC024B -

Sistemas de Informação

Ao concordar participar da prova, você dá sua palavra de honra que suas respostas são fruto
único do seu trabalho. Você pode consultar a internet, por exemplo, mas não pode consultar
outros seres vivos para fazer a prova.

As regras do jogo:

• Você pode consultar entidades inanimadas, mas não pode consultar entidades animadas.

• Você precisa enviar três arquivos para fernando@dcc.ufmg.br até as 19h00 do dia 28 de Novembro, a
saber:

– sol.sml: solução da questão 1.

– sol.py: solução da questão 2.

– sol.pl: solução da questão 3.

• Seu e-mail deve ter o t́ıtulo Prova DCC024. Não use qualquer outro t́ıtulo.

• O único texto no corpo de seu e-mail deve ser seu nome, e, possivelmente, a resposta da questão extra.
Não escreva o código dos arquivos no e-mail: envie os arquivos como anexos.

• Caso você queira reenviar suas respostas, simplesmente responda a mensagem de seu e-mail anterior.
Não envie e-mails separados!

• Não há como tirar dúvidas durante a prova. Lembre-se da cláusula sobre entidades animadas. Isso
inclui escrever e-mails para o instrutor.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Extra 0.5

Questão extra (0.5): se o H era um herói, e o V um vilão, o que fazia o F para viver?

1

1. A questão abaixo diz respeito à seguinte definição de expressões aritméticas, implementada como um
tipo algébrico em SML:

datatype Exp = ADD of Exp * Exp | MUL of Exp * Exp | NUM of int

(a) (5 Pontos) Escreva uma função eval em SML, cujo tipo seja Exp -> int. Essa função transforma
uma expressão aritmética em um inteiro em SML:

- eval (ADD (NUM 4, NUM 5));

val it = 9 : int

- eval (MUL ((ADD (NUM 4, NUM 5)), MUL (NUM 3, NUM 6)));

val it = 162 : int

(b) (5 Pontos) Implemente uma função mul2add, cujo tipo é: Exp -> Exp. Essa função transforma
uma multiplicação em uma sequência de adições. Em outras palavras, ela transforma a expressão
e1 × e2 em e2 somas: e1 + e1 + . . . + e1. Por exemplo:

- mul2add(MUL(NUM 3, NUM 4));

val it = ADD (NUM 4, ADD (NUM 4, ADD (NUM 4, NUM 0))) : Exp

- mul2add(MUL(NUM 2, NUM 4));

val it = ADD (NUM 4, ADD (NUM 4, NUM 0)) : Exp

(* Caso ela receba express~oes que n~ao s~ao multiplicaç~ao, ent~ao nada

acontece *)

- mul2add (ADD (NUM 3, NUM 4));

val it = ADD (NUM 3,NUM 4) : Exp

Note que, dependendo do interpretador que você usar, sua sáıda pode ser um pouco diferente.
Isto não está errado. Por exemplo:

- mul2add(MUL(NUM 3, NUM 4));

val it = ADD (NUM 4,ADD (NUM #,ADD #)) : Exp

- mul2add(MUL(NUM 2, NUM 4));

val it = ADD (NUM 4,ADD (NUM #,NUM #)) : Exp (* Note a # *)

2

2. Nesta questão você deverá utilizar a mesma definição de expressões vista anteriormente, mas desta vez,
nós a faremos em Python, a partir das seguintes classes1:

class Num:

def __init__(self, n):

self.num = n

class Add:

def __init__(self, e1, e2):

self.e1 = e1

self.e2 = e2

class Mul:

def __init__(self, e1, e2):

self.e1 = e1

self.e2 = e2

(a) (3 Pontos) Adicione um método str (self) às três classes acima, para que você possa converter
instâncias de expressões em String. O método str(self) é o equivalente a toString em Java.
Por exemplo:

>>> execfile(’sol.py’)

>>> n0 = Mul(Add(Num(2), Num(3)), Num(4))

>>> print n0

2 + 3 * 4

>>> n1 = Add(n0, n0)

>>> print n1

2 + 3 * 4 + 2 + 3 * 4

Sua implementação deve deixar um espaço entre operadores e operandos. Não deve haver espaços
no ińıcio e no final da expressão.

(b) (3 Pontos) Implemente uma função eval(e), que receba uma expressão e, e retorne o seu valor.
Por exemplo:

>>> execfile(’sol.py’)

>>> n0 = Mul(Add(Num(2), Num(3)), Num(4))

>>> eval(n0)

20

>>> n1 = Add(n0, n0)

>>> eval(n1)

40

(c) (4 Pontos) Adicione uma classe Square à seu conjunto de expressões. Uma instância de Square

representa o quadrado de uma expressão. Por exemplo:

>>> execfile(’sol.py’)

>>> n0 = Add(Square(Num(2)), Square(Num(3)))

>>> eval(n0)

13

>>> print n0

(2)^2 + (3)^2

>>> n1 = Square(Num(5))

1Fique à vontade para adicionar quaisquer métodos auxiliares às classes Zero e Succ.

3

>>> print n1

(5)^2

>>> eval(n1)

25

>>> n2 = Square(n0)

>>> print n2

((2)^2 + (3)^2)^2

Sua implementação de Square precisa ter, no mı́nimo, os métodos init e str .

4

3. A solução desta questão deve ser implementada em Prolog.

(a) (3 Pontos) Implemente um predicado range(M, N, L), que seja verdade se L for a lista com todos
os inteiros de M até N inclusive. Por exemplo:

?- range(1, 1, L).

L = [1] ;

false.

?- range(1, 9, L).

L = [1, 2, 3, 4, 5, 6, 7, 8, 9] ;

false.

?- range(10, 9, L).

false.

(b) (2 Pontos) Implemente o predicado triple prod(N, X, Y, Z), que seja verdade se N = X * Y

* Z. Por exemplo:

?- triple_prod(24, 2, 3, 4).

true.

?- triple_prod(N, 2, 3, 4).

N = 24.

(c) (3 Pontos) Implemente o predicado seq trip prod(N, X, Y, Z), que seja verdade se:

• triple prod(N, X, Y, Z) for verdade;

• X < Y e Y < Z for verdade.

Por exemplo:

?- seq_trip_prod(60, X, Y, Z).

X = 2,

Y = 3,

Z = 10 ;

X = 2,

Y = 5,

Z = 6 ;

X = 3,

Y = 4,

Z = 5 ;

false.

(d) (2 Pontos) Implemente o predicado all triples(N, Triples), que seja verdade se Triples for
uma lista com todas as triplas (X, Y, Z) tal que seq trip prod(N, X, Y, Z) seja verdade. Por
exemplo:

?- all_triples(60, Triples).

Triples = [(2, 3, 10), (2, 5, 6), (3, 4, 5)].

?- all_triples(120, Triples).

Triples = [(2, 3, 20), (2, 4, 15), (2, 5, 12), (2, 6, 10), (3, 4, 10),

(3, 5, 8), (4, 5, 6)].

?- all_triples(200, Triples).

Triples = [(2, 4, 25), (2, 5, 20), (4, 5, 10)].

5

