Prova Final de Linguagens de Programacao
- DCC024B -
Sistemas de Informacao

Ao concordar participar da prova, vocé da sua palavra de honra que suas respostas sao fruto
Unico do seu trabalho. Vocé pode consultar a internet, por exemplo, mas nao pode consultar
outros seres vivos para fazer a prova.

As regras do jogo:

Vocé pode consultar entidades inanimadas, mas nao pode consultar entidades animadas.

Vocé precisa enviar trés arquivos para fernando@dcc.ufmg.br até as 19h00 do dia 28 de Novembro, a
saber:

— sol.sml: solugao da questao 1.
— sol.py: solugao da questao 2.

— sol.pl: solucao da questao 3.

Seu e-mail deve ter o titulo Prova_DCC024. Nao use qualquer outro titulo.

O tnico texto no corpo de seu e-mail deve ser seu nome, e, possivelmente, a resposta da questao extra.
Nao escreva o codigo dos arquivos no e-mail: envie os arquivos como anexos.

Caso vocé queira reenviar suas respostas, simplesmente responda a mensagem de seu e-mail anterior.
Nao envie e-mails separados!

Nao héd como tirar dividas durante a prova. Lembre-se da cldusula sobre entidades animadas. Isso
inclui escrever e-mails para o instrutor.

Seja honesto e lembre-se: vocé deu sua palavra de honra.

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Extra 0.5

Questao extra (0.5): se o H era um herdi, e o V um vildo, o que fazia o F para viver?

1. A questao abaixo diz respeito a seguinte definicao de expressoes aritméticas, implementada como um
tipo algébrico em SML:

datatype Exp = ADD of Exp * Exp | MUL of Exp * Exp | NUM of int

(a)

(5 Pontos) Escreva uma funcéo eval em SML, cujo tipo seja Exp -> int. Essa fungao transforma
uma expressao aritmética em um inteiro em SML:

- eval (ADD (NUM 4, NUM 5));
val it = 9 : int

- eval (MUL ((ADD (NUM 4, NUM 5)), MUL (NUM 3, NUM 6)));
val it = 162 : int

(5 Pontos) Implemente uma fungdo mul2add, cujo tipo é: Exp -> Exp. Essa fungio transforma
uma multiplicagao em uma sequéncia de adi¢bes. Em outras palavras, ela transforma a expressao
e1 X ey em ey somas: €1 + ep + ...+ e;. Por exemplo:

- mul2add (MUL(NUM 3, NUM 4));
val it = ADD (NUM 4, ADD (NUM 4, ADD (NUM 4, NUM 0))) : Exp

- mul2add (MUL(NUM 2, NUM 4));
val it = ADD (NUM 4, ADD (NUM 4, NUM 0)) : Exp

(* Caso ela receba expressdes que nfo sfo multiplicag8o, entfo nada
acontece *)

- mul2add (ADD (NUM 3, NUM 4));

val it = ADD (NUM 3,NUM 4) : Exp

Note que, dependendo do interpretador que vocé usar, sua saida pode ser um pouco diferente.
Isto nao esta errado. Por exemplo:

- mul2add(MUL(NUM 3, NUM 4));
val it = ADD (NUM 4,ADD (NUM #,ADD #)) : Exp

- mul2add (MUL(NUM 2, NUM 4));
val it = ADD (NUM 4,ADD (NUM #,NUM #)) : Exp (x Note a # *)

2. Nesta questao vocé deverd utilizar a mesma definicdo de expressoes vista anteriormente, mas desta vez,
nés a faremos em Python, a partir das seguintes classes':

class Num:
def init__(self, n):

self.num = n

class Add:
def init__(self, el, e2):

self.el = el

self.e2 = e2
class Mul:
def __init__(self, el, e2):
self.el = el
self.e2 = e2

(a) (3 Pontos) Adicione um método __str__(self) as trés classes acima, para que vocé possa converter
instancias de expressoes em String. O método __str(self)__é o equivalente a toString em Java.
Por exemplo:

>>> execfile(’sol.py’)

>>> n0 = Mul (Add(Num(2), Num(3)), Num(4))
>>> print nO

2+ 3 x4

>>> nl = Add(n0, n0)

>>> print nl

2+3*x4+2+3 %4

Sua implementagao deve deixar um espaco entre operadores e operandos. Nao deve haver espagos
no inicio e no final da expressao.

(b) (3 Pontos) Implemente uma funcéo eval(e), que receba uma expressao e, e retorne o seu valor.
Por exemplo:

>>> execfile(’sol.py’)

>>> n0 = Mul (Add(Num(2), Num(3)), Num(4))
>>> eval(n0)

20

>>> nl1 = Add(n0, n0)

>>> eval(nl)

40

(¢) (4 Pontos) Adicione uma classe Square a seu conjunto de expressdes. Uma instancia de Square
representa o quadrado de uma expressao. Por exemplo:

>>> execfile(’sol.py’)

>>> n0 = Add(Square(Num(2)), Square(Num(3)))
>>> eval(n0)

13

>>> print n0

(2)"2 + (3)°2

>>> nl = Square (Num(5))

1Fique & vontade para adicionar quaisquer métodos auxiliares as classes Zero e Succ.

>>> print nl

(56)"2

>>> eval(nl)

25

>>> n2 = Square(n0)
>>> print n2

((2)"2 + (3)"2)"2

Sua implementacao de Square precisa ter, no minimo, os métodos __init__e __str__.

3. A solugao desta questao deve ser implementada em Prolog.

(a)

(3 Pontos) Implemente um predicado range (M, N, L), que seja verdade se L for a lista com todos
os inteiros de M até N inclusive. Por exemplo:

?7- range(l, 1, L).

L = [1] ;
false.

?- range(l, 9, L).
L = [1) 2, 3, 4’ 5’ 6, 7) 83 9] ;
false.

?7- range(10, 9, L).
false.

(2 Pontos) Implemente o predicado triple prod(N, X, Y, Z), que seja verdade se N = X * Y
* Z. Por exemplo

7- triple_prod(24, 2, 3, 4).
true.

?7- triple_prod(N, 2, 3, 4).

N = 24.

(3 Pontos) Implemente o predicado seq_trip_prod(N, X, Y, Z), que seja verdade se:
e triple prod(N, X, Y, Z) for verdade;
e X < YeY < Z for verdade.

Por exemplo:

?7- seq_trip_prod(60, X, Y, Z).

X 2,
Y = 3,
Z =10 ;
X=2,
Y =5,
Z =6 ;
X =3,
Y = 4,
Z =5
false

(2 Pontos) Implemente o predicado all_triples(N, Triples), que seja verdade se Triples for
uma lista com todas as triplas (X, Y, Z) tal que seq_trip_prod(N, X, Y, Z) seja verdade. Por
exemplo:

?7- all_triples(60, Triples).
Triples = [(2, 3, 10), (2, 5, 6), (3, 4, 5)].

?7- all_triples(120, Triples).
Triples = [(2, 3, 20), (2, 4, 15), (2, 5, 12), (2, 6, 10), (3, 4, 10),
(3, 5, 8), (4, 5, 6)].

7- all_triples(200, Triples).
Triples = [(2, 4, 25), (2, 5, 20), (4, 5, 10)].

