
Prova Final de Linguagens de Programação
- DCC024 -

Ciência da Computação e Sistemas de Informação

Ao concordar participar da prova, você dá sua palavra de honra que suas respostas são fruto
único do seu trabalho. Você pode consultar a internet, por exemplo, mas não pode consultar
outros seres vivos para fazer a prova.

As regras do jogo:

• Você pode consultar entidades inanimadas, mas não pode consultar entidades animadas.

• Você precisa enviar três arquivos para fernando@dcc.ufmg.br até as 19h00 do dia 30 de Janeiro, a
saber:

– sol.sml: solução da questão 1.

– sol.py: solução da questão 2.

– sol.pl: solução da questão 3.

• Seu e-mail deve ter o t́ıtulo Prova DCC024. Não use qualquer outro t́ıtulo.

• O único texto no corpo de seu e-mail deve ser seu nome, e, possivelmente, a resposta da questão extra.
Não escreva o código dos arquivos no e-mail: envie os arquivos como anexos.

• Caso você queira reenviar suas respostas, simplesmente responda a mensagem de seu e-mail anterior.
Não envie e-mails separados!

• Não há como tirar dúvidas durante a prova. Lembre-se da cláusula sobre entidades animadas. Isso
inclui escrever e-mails para o instrutor.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Extra 0.5

Questão extra (0.5): De qual livro foi retirado o trecho abaixo?

1



1. (10 Pontos) Nesta questão, você deverá implementar uma função group, em SML. Essa função possui
o seguinte tipo: int list -> int list -> (int * int) list. Ela recebe duas listas de inteiros
means e points. Ela então retorna uma lista de pares de inteiros, (m, p), tal que:

• m é um elemento de means;

• p é um elemento de points;

• não existe outro elemento m’ em means tal que a diferença absoluta entre m’ e p seja menor que
a diferença absoluta entre m e p.

Alguns exemplos da execução da função group podem ser vistos logo abaixo:

- group [2] [1, 3, 4, 6, 7, 9, 10];

val it = [(2,1),(2,3),(2,4),(2,6),(2,7),(2,9),(2,10)] : (int * int) list

- group [2, 5, 8] [1, 3, 4, 6, 7, 9, 10];

val it = [(2,1),(2,3),(5,4),(5,6),(8,7),(8,9),(8,10)] : (int * int) list

- group [1, 8] [2, 3, 4, 5, 6, 7];

val it = [(1,2),(1,3),(1,4),(8,5),(8,6),(8,7)] : (int * int) list

- group [1, 8] nil;

val it = [] : (int * int) list

- group nil [2, 3, 4, 5, 6, 7];

uncaught exception Match [nonexhaustive match failure]

Você não precisa tratar o caso em que a lista means esteja vazia. Em outras palavras, deixe que a
ocorrência dessa lista vazia como parâmetro de entrada cause uma exceção de casamento não exaustivo.

2



2. Esta questão refere-se à classe abaixo, que cria números inteiros a partir de seus d́ıgitos, organizados
em uma lista:

class Num:

def __init__(self, digits):

self.n = 0

pow = 1

for d in range(len(digits)):

digit = digits[len(digits) - 1 - d]

if digit < 0 or digit > 9:

raise ArithmeticError(’Isso parece um digito? ’ + str(digit))

self.n += pow * digit

pow *= 10

def __str__(self):

return str(self.n)

Exemplos de uso seguem abaixo:

>>> n1 = Num([1, 2, 3]); print(n1)

123

>>> n1 = Num([0, 1, 2, 3]); print(n1)

123

>>> n1 = Num([0, 1, 2, 3, 0]); print(n1)

1230

>>> n1 = Num([10, 2, 3])

ArithmeticError: Isso parece um digito para voce? 10

(a) (5 Pontos) Implemente uma classe Neg, que estenda a classe Num. Toda instância de Neg representa
um número negativo. Por exemplo:

>>> n1 = Neg([1, 2, 3]); print(n1)

-123

>>> n1 = Neg([0, 1, 2, 3]); print(n1)

-123

>>> n1 = Neg([0, 1, 2, 3, 0]); print(n1)

-1230

(b) (5 Pontos) Implemente uma classe Dec, que estenda a classe Num, de forma que toda instância de
Dec represente um número decimal. Note que o construtor de Dec recebe um parâmetro extra:

>>> n1 = Dec([1, 2, 3], [1, 2, 3]); print(n1)

123.123

>>> n1 = Dec([1, 2, 3], [0, 1, 2, 3]); print(n1)

123.0123

>>> n1 = Dec([1, 2, 3], [0, 1, 2, 3, 0]); print(n1)

123.0123

>>> n1 = Dec([0, 1, 2, 3], [0, 1, 2, 3, 0]); print(n1)

123.0123

>>> n1 = Dec([0, 1, 2, 3, 0], [0, 1, 2, 3, 0]); print(n1)

1230.0123

3



3. Nesta questão você deverá trabalhar com a noção de distância de edição. A distância de edição entre
duas cadeias de caracteres, s1 e s2, e o menor número de caracteres que você pode inserir, remover ou
modificar em s1 até obter s2.

(a) (4 Pontos) Escreva um predicado hop one(L, S, D), que seja verdade se D for uma lista produzida
pela inserção de um caractere presente na lista L em S. Exemplos:

?- hop_one([a, b, c], [x, y, z], [x, a, y, z]).

true ;

false.

?- hop_one([a, b, c], [x], [x, Var]).

Var = a ;

Var = b ;

Var = c ;

false.

(b) (4 Pontos) Escreva um predicado replace(L, S, D), que seja verdade se for posśıvel transformar
D em S substituindo-se um caractere de D por um caractere presente em L. Por exemplo:

?- replace([a, b, c], [x, y, a], [x, y, z]). # Basta substituir ’z’ por ’a’

true ;

false.

?- replace([a, b, c], [x, y, z], [x, y, a]).

false.

?- replace([a, b, c], [x, y, a], [x, Var, z]).

Var = y ;

false.

(c) (2 Pontos) Finalmente, escreva um predicado hop two(L, S, D), que seja verdade se for posśıvel
transformar S em D usando primeiro uma chamada a hop one, e depois, uma chamada a replace.
Por exemplo:

?- hop_two([a, b, c], [x, y, b], [x, a, y, z]).

true ; # Insere ’a’ após ’x’, e depois transforma ’b’ em ’z’.

false.

?- hop_two([a], [x, y, a], [x, y, a, z]).

true ; # insere ’a’ na frente de ’x’, depois transforma ’x’ (lista 3) em ’a’.

true ; # insere ’a’ depois de ’a’ e depois transforma ’z’ em ’a’.

false.

4


