Prova Final de Linguagens de Programacao
- DCC024 -
Ciéencia da Computacao

Ao concordar participar da prova, vocé da sua palavra de honra que suas respostas sao
fruto inico do seu trabalho. Vocé pode consultar a internet, por exemplo, mas nao pode consultar
outros seres vivos para fazer a prova.

As regras do jogo:

e Vocé pode consultar entidades inanimadas, mas nao pode consultar entidades animadas.

Sua solucao deve estar distribuida em trés arquivos:

— sol.sml: solucao da questao 1.
— sol.py: solugao da questao 2.
— sol.pl: solugao da questao 3.

e Coloque os arquivos em uma pasta com o seu nome (\fulano_de_tal\), e compacte-0s em um arquivo
sol.zip (ou sol.gz). Envie sol.zip para fernando@dcc.ufmg.br até as 9h10 do dia 19 de Junho.

e Seu e-mail deve ter o titulo Prova_DCC024. Nao use qualquer outro titulo.

e Hscreva seu nome completo no corpo do e-mail, e, possivelmente, a resposta da questao extra. Nao
escreva o codigo dos arquivos no e-mail: envie sol.zip como anexo.

e (Caso vocé queira reenviar suas respostas, simplesmente responda a mensagem de seu e-mail anterior.
Nao envie e-mails separados! Respostas nao sao corrigidas apés 9h10.

e Nao héd como tirar duvidas durante a prova. Lembre-se da cldusula sobre entidades animadas. Isso
inclui escrever e-mails para o instrutor.

e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Extra 0.5

Questao extra (0.5): Responda a pergunta de Schtroumpf.
-

Qe asr. ca aui cab
Ppus schrraupmpt
| que b gchtwoumpfF
| de wmion aschtvoungy 7

1. (10 Pontos) Nesta questao, vocé deverd implementar uma fun¢ao mywhl, em SML. Essa fungao simula
a funcionalidade do comando while da linguagem C, e possui o seguinte tipo: int -> ’a -> (’a ->
’a) -> ’a. Ela recebe um contador n, um acumulador acc e uma fungao cmd. Ela entao aplica cmd
sobre acc um numero de vezes igual a n:

mywhl n acc cmd = cmd (cmd (... cmd acc))

Alguns exemplos da execugdo da fun¢ao mywhl podem ser vistos logo abaixo:

- mywhl 3 1 (fn x => x + 1);

val it = 4 : int

-mywhl 7 3 (fn x => x + 1);

val it = 10 : int

- mywhl 3 2 (fn x => x * X);

val it = 256 : int

- mywhl 3 nil (fn x => "dcc024" :: x) ;

val it = ["dcc024","dcc024","dcc024"] : string list
- mywhl 4 "n (fn x => "' ~ x ° n_u);

val it = "++++-———-" : string

- mywhl 4 "dcc024" (fn x => "(" "~ x = ")");
val it = "((((dcc024))))" : string

(a) (4 Pontos) Implemente a fun¢ao mywhl.

(b) (3 Pontos) Utilize a fun¢do mywhl para implementar uma fungéo nthPower, de tipo int -> int.
Essa funcdo recebe um nimero n, e retorna n”. Por exemplo!:

- nthPower 1;

val it = 1 : int

- nthPower 2;

val it = 4 : int

- map nthPower [1, 2, 3, 4, 5, 6, 7];

val it = [1,4,27,256,3125,46656,823543] : int list

(¢) (3 Pontos) Utilize a fun¢do mywhl para implementar uma funcdo fact, de tipo int -> int. Essa
fungao retorna o fatorial de um nimero. O fatorial de um nimero negativo é 1. Por exemplo:

- fact 0;

val it = 1 : int
- fact 2;

val it = 2 : int
- fact "1;

val it = 1 : int
- map fact ["5, "4, "3, "2, "1, 0, 1, 2, 3, 4, 5];
val it = [1,1,1,1,1,1,1,2,6,24,120] : int list

INote que é facil implementar essa fungio (e também a préxima), diretamente em SML, sem usar mywhl. Mas, nesta questio,
vocé deve usar mywhl, e somente mywhl, para produzir qualquer tipo de iteragao!

2. Esta questao refere-se & manipulagao de strings em Python. O termo substring é definido como uma
fatia de uma string. Em outras palavras, dada uma string s, uma substring de s é uma sequéncia
contigua dos caracteres de s.

(a)

(4 Pontos) Escreva uma funcao largestIncreasingSubstr(s) que produza uma tabela L com a
seguinte propriedade: L[i] é a maior substring crescente a partir da posigao i da string s. Por
exemplo:

>>> largests = largestIncreasingSubstr("Domingos")

>>> for s in largests: >>> for i in range(len(largests))
print(s) ... print (i, largests[i])

Do (0, ’Do?)

o (1, ’0?%)

m (2, m’)

in (3, ’in?)

n (4, ’n’)

gos (5, ’gos’)

os (6, ’o0s’)

s (7, ’s?)

(3 Pontos) Crie uma func¢ao findLargest(s), que retorne a maior substring da string s que
possua todos os caracteres em ordem lexicografica crescente. Por exemplo:

>>> print("Largest string: <" + findLargest("abcabcdababcdeab")) + ">"
Largest string: <abcde>
>>> print("Largest string: <" + findLargest("abcabcdababcdab")) + ">"
Largest string: <abcd>

>>> print("Largest string: <" + findLargest("xbcxbcdxbxbcdxb")) + ">"
Largest string: <bcdx>
>>> print("Largest string: <" + findLargest("edcba")) + ">"

Largest string: <a>

>>> print("Largest string: <" + findLargest("edxcba")) + ">"
Largest string: <dx>

>>> print("Largest string: <" + findLargest("")) + ">"
Largest string: <>

(3 Pontos) Crie uma funcao findLargestThan(s, K), que retorne todas as substrings de s, cons-
tituidas por caracteres em ordem lexicogréafica crescente, que possuam mais que K caracteres. Por
exemplo:

>>> findLargestThan("ababcababcdab", 2)

[’abc’, ’abcd’, ’bcd’]

>>> findLargestThan("abcdefgh", 3)

[’abcdefgh’, ’bcdefgh’, ’cdefgh’, ’defgh’, ’efgh’]
>>> findLargestThan("edcba", 3)

(]

>>> findLargestThan("edcba", 0)

[’e’, ’da’, ’c’, ’b’, ’a’]

>>> findLargestThan("", 2)

[

3. Nesta questao iremos descrever um jogo de palavras cruzadas em Prolog. Por exemplo, o tabuleiro
abaixo é descrito por 36 predicados?:

Predicates Palavra Cruzada
char(0, 0, s). char(1, 0, 0). char(2, 0, m). char(3, 0, a). char(4, 0, r). char(5, O, I). S AL T A
char(0, 1, a). char(1, 1, ¢). char(2, 1, o). char(3, 1, c). char(4, 1, o). char(5, 1, i). O C A R O
char(0, 2, 1). char(1, 2, a). char(2, 2, t). char(3, 2, a). char(4, 2, 1). char(5, 2, r). M O T 1 M
char(0, 3, t). char(1, 3, r). char(2, 3,1i). char(3, 3,1). char(4, 3, h). char(5, 3, a). A C A L D
char(0, 4, a). char(1, 4, o). char(2, 4, m). char(3, 4, d). char(4, 4, a). char(5, 4, m). R O L H A
char(0, 5, r). char(1, 5, e). char(2, 5, a). char(3, 5, 0). char(4, 5, v). char(5, 5, o). L I R A M

(a) (3 Pontos) Crie um predicado hsearch(X, Y, L), que seja verdadeiro se L for uma lista que
descreva uma palavra comecando na posicao (X, Y) da matriz de palavra cruzada. Essa palavra
deve ser lida horizontalmente, da esquerda para a direita. Por exemplo, considerando-se a matriz
vista acima, temos:

?- char(1, 1, X).

X =c ;

false.

?- hsearch(1, 1, [c]).

true ;

false.

?- hsearch(1, 1, [c, a, r, o]).
true ;

false.

?- hsearch(1, 1, [c, a, r, r, o]).
false.

(b) (3 Pontos) Crie um predicado vsearch(X, Y, L), que seja verdadeiro se L for uma lista que
descreva uma palavra comegando na posicao (X, Y) da matriz de palavra cruzada. Essa palavra
deve ser lida wverticalmente, de cima para baixo. Por exemplo, considerando-se a matriz vista
acima, temos:

?- vsearch(1, 1, [c, o, c, o]).

true ;

false.

?- vsearch(1, 1, [t, r, i, 1, h, al).
false.

?- vsearch(0, 3, [t, r, i, 1, h, al).
true ;

false.

(¢) (2 Pontos) Crie um predicado wmember (W), que seja verdadeiro caso W for uma lista contendo uma
palavra presente na matriz de palavras cruzadas. Palavras deve ser lidas horizontalmente (sempre
da esquerda para a direita), ou verticalmente (sempre de cima para baixo). Note que vocé pode
reusar hsearch e vsearch, os predicados vistos na questao acima. Por exemplo:

2Nao assuma que a matriz de palavras cruzadas é fixa. Seu programa serd testado com uma matriz diferente. Mas, se
quiser um caso de testes, fique & vontade para usar esses predicados: char(0, 0, s). char(0, 1, a). char(0, 2, 1).
char(0, 3, t). char(0, 4, a). char(0, 5, r). char(1, O, o). char(1, 1, ¢). char(1, 2, a). char(1, 3, r).
char(1, 4, o). char(1, 5, e). char(2, 0, m). char(2, 1, o). char(2, 2, t). char(2, 3, i). char(2, 4, m).
char(2, 5, a). char(3, 0, a). char(3, 1, ¢). char(3, 2, a). char(3, 3, 1). char(3, 4, d). char(3, 5, o).
char(4, 0, r). char(4, 1, o). char(4, 2, 1). char(4, 3, h). char(4, 4, a). char(4, 5, v). char(5, 0, 1).
char(5, 1, i). char(5, 2, r). char(5, 3, a). char(5, 4, m). char(5, 5, o).

O < o » m »

?- wmember([s, o, m, al]).
true ;

false.

?- wmember([s, o, m, a, s]).
false.

?- wmember([c, a, 1, d, o]).
true ;

false.

?- wmember([o, X, al).

X =c;

X=m ;

false.

(2 Pontos) Crie um predicado answers(L, S), que seja verdadeiro caso L seja uma lista de listas
de letras, e S seja uma sublista de L, formada somente pelas palavras que estao presentes na matriz
de palavras cruzadas. Por exemplo:

?- answers([[s, o, m, a, r], [c, o, ¢, o], [c, a, r, r, o], [c, a, r, ol]l, S).
S =1[[s, o, my a, r], [c, o, ¢, o], [c, a, r, ol].
?7- answers(nil, S).
S =1].
?- answers([[c, a, <], [c, o, ¢, al], [a, r, o], [c, a, r, ol], 9).
S =[[a, r, ol, [c, a, r, ol].
7- answers([[X1, X2, X3, X4, X5, X6]1, S), length(S, N).
s=1[[s, a, 1, t, a, r]l, [0, ¢, a, r, 0o, e], [m, o, t, i, m, a],
[a, ¢, a, 1, d4l...], [r, o, 1, h|...], [1, i, rl...],
[s, ol...], [al...], [...1...11...],
N = 12.

