
Prova Final de Linguagens de Programação
- DCC024 -

Ciência da Computação
Ao concordar participar da prova, você dá sua palavra de honra que suas respostas são

fruto único do seu trabalho. Você pode consultar a internet, por exemplo, mas não pode consultar
outros seres vivos para fazer a prova.

As regras do jogo:

• Você pode consultar entidades inanimadas, mas não pode consultar entidades animadas.

• Sua solução deve estar distribúıda em três arquivos:

– sol.sml: solução da questão 1.

– sol.py: solução da questão 2.

– sol.pl: solução da questão 3.

• Coloque os arquivos em uma pasta com o seu nome (\fulano_de_tal\), e compacte-os em um arquivo
sol.zip (ou sol.gz). Envie sol.zip para fernando@dcc.ufmg.br até as 9h10 do dia 19 de Junho.

• Seu e-mail deve ter o t́ıtulo Prova DCC024. Não use qualquer outro t́ıtulo.

• Escreva seu nome completo no corpo do e-mail, e, possivelmente, a resposta da questão extra. Não
escreva o código dos arquivos no e-mail: envie sol.zip como anexo.

• Caso você queira reenviar suas respostas, simplesmente responda a mensagem de seu e-mail anterior.
Não envie e-mails separados! Respostas não são corrigidas após 9h10.

• Não há como tirar dúvidas durante a prova. Lembre-se da cláusula sobre entidades animadas. Isso
inclui escrever e-mails para o instrutor.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Extra 0.5

Questão extra (0.5): Responda a pergunta de Schtroumpf.

1

1. (10 Pontos) Nesta questão, você deverá implementar uma função mywhl, em SML. Essa função simula
a funcionalidade do comando while da linguagem C, e possui o seguinte tipo: int -> ’a -> (’a ->

’a) -> ’a. Ela recebe um contador n, um acumulador acc e uma função cmd. Ela então aplica cmd

sobre acc um número de vezes igual a n:

mywhl n acc cmd = cmd (cmd (... cmd acc))

Alguns exemplos da execução da função mywhl podem ser vistos logo abaixo:

- mywhl 3 1 (fn x => x + 1);

val it = 4 : int

- mywhl 7 3 (fn x => x + 1);

val it = 10 : int

- mywhl 3 2 (fn x => x * x);

val it = 256 : int

- mywhl 3 nil (fn x => "dcc024" :: x) ;

val it = ["dcc024","dcc024","dcc024"] : string list

- mywhl 4 "" (fn x => "+" ^ x ^ "-");

val it = "++++----" : string

- mywhl 4 "dcc024" (fn x => "(" ^ x ^ ")");

val it = "((((dcc024))))" : string

(a) (4 Pontos) Implemente a função mywhl.

(b) (3 Pontos) Utilize a função mywhl para implementar uma função nthPower, de tipo int -> int.
Essa função recebe um número n, e retorna nn. Por exemplo1:

- nthPower 1;

val it = 1 : int

- nthPower 2;

val it = 4 : int

- map nthPower [1, 2, 3, 4, 5, 6, 7];

val it = [1,4,27,256,3125,46656,823543] : int list

(c) (3 Pontos) Utilize a função mywhl para implementar uma função fact, de tipo int -> int. Essa
função retorna o fatorial de um número. O fatorial de um número negativo é 1. Por exemplo:

- fact 0;

val it = 1 : int

- fact 2;

val it = 2 : int

- fact ~1;

val it = 1 : int

- map fact [~5, ~4, ~3, ~2, ~1, 0, 1, 2, 3, 4, 5];

val it = [1,1,1,1,1,1,1,2,6,24,120] : int list

1Note que é fácil implementar essa função (e também a próxima), diretamente em SML, sem usar mywhl. Mas, nesta questão,
você deve usar mywhl, e somente mywhl, para produzir qualquer tipo de iteração!

2

2. Esta questão refere-se à manipulação de strings em Python. O termo substring é definido como uma
fatia de uma string. Em outras palavras, dada uma string s, uma substring de s é uma sequência
cont́ıgua dos caracteres de s.

(a) (4 Pontos) Escreva uma função largestIncreasingSubstr(s) que produza uma tabela L com a
seguinte propriedade: L[i] é a maior substring crescente a partir da posição i da string s. Por
exemplo:

>>> largests = largestIncreasingSubstr("Domingos")

>>> for s in largests: >>> for i in range(len(largests))

... print(s) ... print (i, largests[i])

... ...

Do (0, ’Do’)

o (1, ’o’)

m (2, ’m’)

in (3, ’in’)

n (4, ’n’)

gos (5, ’gos’)

os (6, ’os’)

s (7, ’s’)

(b) (3 Pontos) Crie uma função findLargest(s), que retorne a maior substring da string s que
possua todos os caracteres em ordem lexicográfica crescente. Por exemplo:

>>> print("Largest string: <" + findLargest("abcabcdababcdeab")) + ">"

Largest string: <abcde>

>>> print("Largest string: <" + findLargest("abcabcdababcdab")) + ">"

Largest string: <abcd>

>>> print("Largest string: <" + findLargest("xbcxbcdxbxbcdxb")) + ">"

Largest string: <bcdx>

>>> print("Largest string: <" + findLargest("edcba")) + ">"

Largest string: <a>

>>> print("Largest string: <" + findLargest("edxcba")) + ">"

Largest string: <dx>

>>> print("Largest string: <" + findLargest("")) + ">"

Largest string: <>

(c) (3 Pontos) Crie uma função findLargestThan(s, K), que retorne todas as substrings de s, cons-
titúıdas por caracteres em ordem lexicográfica crescente, que possuam mais que K caracteres. Por
exemplo:

>>> findLargestThan("ababcababcdab", 2)

[’abc’, ’abcd’, ’bcd’]

>>> findLargestThan("abcdefgh", 3)

[’abcdefgh’, ’bcdefgh’, ’cdefgh’, ’defgh’, ’efgh’]

>>> findLargestThan("edcba", 3)

[]

>>> findLargestThan("edcba", 0)

[’e’, ’d’, ’c’, ’b’, ’a’]

>>> findLargestThan("", 2)

[]

3

3. Nesta questão iremos descrever um jogo de palavras cruzadas em Prolog. Por exemplo, o tabuleiro
abaixo é descrito por 36 predicados2:

S A L T A R

O C A R O E

M O T I M A

A C A L D O

R O L H A V

L I R A M O

char(0, 0, s). char(1, 0, o). char(2, 0, m). char(3, 0, a). char(4, 0, r). char(5, 0, l).

char(0, 1, a). char(1, 1, c). char(2, 1, o). char(3, 1, c). char(4, 1, o). char(5, 1, i).

char(0, 2, l). char(1, 2, a). char(2, 2, t). char(3, 2, a). char(4, 2, l). char(5, 2, r).

char(0, 3, t). char(1, 3, r). char(2, 3, i). char(3, 3, l). char(4, 3, h). char(5, 3, a).

char(0, 4, a). char(1, 4, o). char(2, 4, m). char(3, 4, d). char(4, 4, a). char(5, 4, m).

char(0, 5, r). char(1, 5, e). char(2, 5, a). char(3, 5, o). char(4, 5, v). char(5, 5, o).

Predicates Palavra Cruzada

(a) (3 Pontos) Crie um predicado hsearch(X, Y, L), que seja verdadeiro se L for uma lista que
descreva uma palavra começando na posição (X, Y) da matriz de palavra cruzada. Essa palavra
deve ser lida horizontalmente, da esquerda para a direita. Por exemplo, considerando-se a matriz
vista acima, temos:

?- char(1, 1, X).

X = c ;

false.

?- hsearch(1, 1, [c]).

true ;

false.

?- hsearch(1, 1, [c, a, r, o]).

true ;

false.

?- hsearch(1, 1, [c, a, r, r, o]).

false.

(b) (3 Pontos) Crie um predicado vsearch(X, Y, L), que seja verdadeiro se L for uma lista que
descreva uma palavra começando na posição (X, Y) da matriz de palavra cruzada. Essa palavra
deve ser lida verticalmente, de cima para baixo. Por exemplo, considerando-se a matriz vista
acima, temos:

?- vsearch(1, 1, [c, o, c, o]).

true ;

false.

?- vsearch(1, 1, [t, r, i, l, h, a]).

false.

?- vsearch(0, 3, [t, r, i, l, h, a]).

true ;

false.

(c) (2 Pontos) Crie um predicado wmember(W), que seja verdadeiro caso W for uma lista contendo uma
palavra presente na matriz de palavras cruzadas. Palavras deve ser lidas horizontalmente (sempre
da esquerda para a direita), ou verticalmente (sempre de cima para baixo). Note que você pode
reusar hsearch e vsearch, os predicados vistos na questão acima. Por exemplo:

2Não assuma que a matriz de palavras cruzadas é fixa. Seu programa será testado com uma matriz diferente. Mas, se
quiser um caso de testes, fique à vontade para usar esses predicados: char(0, 0, s). char(0, 1, a). char(0, 2, l).

char(0, 3, t). char(0, 4, a). char(0, 5, r). char(1, 0, o). char(1, 1, c). char(1, 2, a). char(1, 3, r).

char(1, 4, o). char(1, 5, e). char(2, 0, m). char(2, 1, o). char(2, 2, t). char(2, 3, i). char(2, 4, m).

char(2, 5, a). char(3, 0, a). char(3, 1, c). char(3, 2, a). char(3, 3, l). char(3, 4, d). char(3, 5, o).

char(4, 0, r). char(4, 1, o). char(4, 2, l). char(4, 3, h). char(4, 4, a). char(4, 5, v). char(5, 0, l).

char(5, 1, i). char(5, 2, r). char(5, 3, a). char(5, 4, m). char(5, 5, o).

4

?- wmember([s, o, m, a]).

true ;

false.

?- wmember([s, o, m, a, s]).

false.

?- wmember([c, a, l, d, o]).

true ;

false.

?- wmember([o, X, a]).

X = c ;

X = m ;

false.

(d) (2 Pontos) Crie um predicado answers(L, S), que seja verdadeiro caso L seja uma lista de listas
de letras, e S seja uma sublista de L, formada somente pelas palavras que estão presentes na matriz
de palavras cruzadas. Por exemplo:

?- answers([[s, o, m, a, r], [c, o, c, o], [c, a, r, r, o], [c, a, r, o]], S).

S = [[s, o, m, a, r], [c, o, c, o], [c, a, r, o]].

?- answers(nil, S).

S = [].

?- answers([[c, a, c], [c, o, c, a], [a, r, o], [c, a, r, o]], S).

S = [[a, r, o], [c, a, r, o]].

?- answers([[X1, X2, X3, X4, X5, X6]], S), length(S, N).

S = [[s, a, l, t, a, r], [o, c, a, r, o, e], [m, o, t, i, m, a],

[a, c, a, l, d|...], [r, o, l, h|...], [l, i, r|...],

[s, o|...], [a|...], [...|...]|...],

N = 12.

5

