
Primeira Prova de Linguagens de Programação
- DCC024 -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Serão avaliadas somente as sete melhores respostas. Então sinta-se livre para abandonar alguma questão
devido ao tempo.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8

1



1. Esta questão refere-se à gramática abaixo, que representa uma linguagem muito simples, de somas de
números. Por simplicidade nós não mostraremos as regras de produção para números:

〈E〉 ::= 〈E〉+ 〈E〉
| 〈Number〉

(a) Prove que a gramática em questão é amb́ıgua.

(b) Mostre como esta ambiguidade compromete a semântica da linguagem que a gramática representa.

(c) Forneça uma gramática que reconheça a mesma linguagem, mas que não seja amb́ıgua.

2



2. O programa gcc, usado em Unix para invocar o compilador de C desenvolvido pela gnu, é na verdade
um script que invoca vários outros programas. É posśıvel saber quais os programas são invocados por
gcc adicionando-se o parâmetro -v à sua linha de invocação. Cada uma das questões abaixo contém
um dos passos adotados por gcc para produzir um arquivo binário a partir de um programa fonte
hello.c. Descreva o que cada uma destas linhas faz.

(a) gcc -E hello.c > hello.p.c

(b) gcc -S hello.p.c -o hello.p.s

(c) as hello.p.s -o hello.o

(d) /usr/bin/ld hello.o -o a.out

3



3. Dizemos que uma linguagem é segura quando esta linguagem não permite que operações sejam aplicadas
a argumentos que não possuam os tipos previstos por estas operações. C e C++ são linguagens
inseguras, pois muitas vezes valores armazenados em memória são utilizados sem qualquer fiscalização
de seus tipos.

(a) Escreva um programa em C ou C++ que evidencie o caráter inseguro de uma destas linguagens.

(b) Existem linguagens mais antigas que C ou C++ que são consideradas seguras, logo, a possibilidade
de uso inseguro de tipos não é devido à ignorância sobre os perigos desta abordagem. ML, por
exemplo, já havia sido definida dez anos antes de C++, porém enquanto ML é uma linguagem
considerada segura, C++ não é. Cite um fator que motivou o desenho inseguro de C++.

4



4. Nós podemos representar números inteiros usando o cálculo λ. Uma das convenções mais comuns é
assumir que um número n é uma função que recebe dois argumentos, e aplica o primeiro ao segundo
n vezes. Por exemplo:

• 0 = λs.λz.z

• 1 = λs.λz.sz

• 2 = λs.λz.s(sz)

Podemos também representar valores booleanos usando o cálculo λ. Uma convenção simples é:

• F = λx.λy.y

• T = λx.λy.x

(a) Considere a função MUL = λn1.λn2.λz.n1(n2 z). Usando a definição do número 2 acima, mostre
todos os passos da redução MUL 2 2.

(b) Usando a função sucessor, SUCC = λn.λy.λx.y(n y x), defina a função ADD, que soma dois
números.

(c) Defina uma função Z, que receba um argumento n. Assuma que este argumento é um número,
representado segundo a convenção acima. A função Z deve retornar o booleano T caso este número
seja zero, ou seja, n = λs.λz.z, e deve retornar F caso contrário.

(d) Defina uma função XOR, que receba dois valores booleanos b1 e b2, definidos como convencionado
acima, e retorne T caso b1 6= b2 e F caso contrário.

5



5. Considere o programa abaixo, escrito em SML/NJ:

fun g x =

let

val inc = 1

fun f y = y + inc

fun h z =

let

val inc = 2

in

f z

end

in

h x

end

(a) Desenhe um ćırculo em torno de cada bloco deste programa, e numere estes blocos.

(b) Quais são os nomes definidos neste programa?

(c) Para cada definição, descreva o escopo desta definição fornecendo seu número de bloco.

(d) Para cada ocorrência de um nome, além da definição daquele nome, mostre a qual definição este
nome está associado.

(e) Com base no resultado da questão anterior, qual o valor de g 5?

6



6. O objetivo desta questão é escrever uma função concat de várias formas diferentes. Esta função recebe
como entrada uma lista de strings, e retorna uma única string, formada a partir da concatenação dos
elementos da lista. Por exemplo, concat ["ab", "cd", "ef"] = "abcdef".

(a) Escreva a função concat usando recursão expĺıcita. Neste caso, programe “indutivamente”, isto
é, defina um caso base, quando a lista de entrada estiver vazia, e defina um caso de indução. No
passo indutivo, use o seguinte racioćınio para escrever o programa: dado que você sabe concatenar
uma lista de n elementos, como fazer para concatenar uma lista de n+ 1 elementos?

(b) Escreva a função concat em uma linha, usando a função foldr.

7



7. As funções deste exerćıcio devem ser escritas sem que sejam utilizadas as funções foldr, foldl e map.

(a) Defina a função mymap, que tenha o mesmo tipo e comportamento de map.

(b) Qual o tipo de mymap?

(c) Defina a função myfoldr, que tenha o mesmo tipo e comportamento de foldr.

(d) Qual o tipo de myfoldr?

(e) Defina a função myfoldl, que tenha o mesmo tipo e comportamento de foldl.

8



8. O objetivo deste exerćıcio é completar a função abaixo, que computa o Crivo de Erastótenes:

fun filterNonPrimes _ nil = 0

| filterNonPrimes limit (h::t) =

if h * h <= limit

then h + filterNonPrimes limit (filter (fn e => (e mod h) <> 0) t)

else h + sum t

fun sieve n = filterNonPrimes n (inv (range n) nil)

(a) Escreva a função sum, de tipo int list -> int, que calcula a soma de uma lista de inteiros.

(b) Escreva a função range, de tipo int -> int list, que produza listas de inteiros em ordem
descrescente, isto é, range 4 = [4,3,2].

(c) Escreva a função inv, de tipo ’a list -> ’a list -> ’a list, que receba duas listas: l1 e l2.
A função deve inverter a lista l1, usando a lista l2 como um acumulador da lista invertida. Isto
é, inv [4,3,2] nil = [2,3,4] e inv [5, 4, 3] [8, 9, 10] = [3, 4, 5, 8, 9, 10]. Note
que o propósito do parâmetro l2 é tornar a implementação da função mais eficiente.

9


