
Primeira Prova de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1

1. Esta questão refere-se ao programa abaixo, escrito em C:

int main(int argc, char** argv) {
int *j = argv[1];
printf("j = %d\n", j);
printf("*j = %d\n", *j);

}

(a) (3 Pontos) Ao ser compilado e executado, o programa acima produz um erro do tipo “falha de
segmentação”, conforme os comandos reportados logo abaixo:

$> gcc segFault.c
$> ./a.out
j = 0
Segmentation fault

O que está errado no programa acima? Em outras palavras, qual o erro lógico no texto do
programa que causa a falha de segmentação?

(b) (3 Pontos) Explique o que é uma falha de segmentação. A sua explicação deve conter uma
resposta para a seguinte pergunta: esse tipo de erro é causado por código criado pelo compilador,
durante a chamada gcc segFault.c; ou ele é criado pelo sistema operacional; ou ele é criado
pela arquitetura?

(c) (4 Pontos) O programa abaixo é uma cópia do programa original, desta vez escrito em Java:

public class SegFault {
public static void main(String argv[]) {
String j = argv[1];
System.out.println("*j = " + j);

}
}

A chamada abaixo pode causar uma falha de segmentação? Sua resposta deve conter uma justi-
ficativa.

$> javac SegFault.java
$> java SegFault

2

2. Considere a função abaixo, escrita em SML:

fun s f = f f;

Se tentássemos declarar essa função, tal qual ela foi escrita, obteŕıamos o seguinte erro:

Error: operator is not a function [circularity]
operator: ’Z
in expression:
f f

Por que não é posśıvel declarar a função s? Dica: a solução para esta pergunta está relacionada ao
sistema de tipos de SML, e os tipos envolvidos nessa declaração.

3

3. Números de Church podem ser implementados em SML da seguinte forma:

val ZERO = fn s => fn z => z;
val ONE = fn s => fn z => s z;
val TWO = fn s => fn z => s (s z);
val THREE = fn s => fn z => s (s (s z))
...

As próximas questões estão relacionadas à essa forma de implementar os Números de Church.

(a) (2 Pontos) Qual o tipo que o interpretador de SML inferiria para a função ZERO?

(b) (2 Pontos) Qual o tipo que o interpretador de SML inferiria para a função ONE?

(c) (3 Pontos) Implemente uma função int2church, que receba como entrada um inteiro n, e produza
o número de Church c que corresponda a n. O tipo de sua função será int -> (’a -> ’a) ->
’a -> ’a. Sinta-se livre para utilizar a função sucessor, definida abaixo:

val SUCC = fn w => fn y => fn x => y(w y x)

Se o inteiro de entrada for menor que zero, então sua implementação deve retornar o número de
Church ZERO. Note que a sua função deve terminar para qualquer entrada.

(d) (3 Pontos) Implemente uma função intL2churchL, de tipo int list -> ((’a -> ’a) -> ’a
-> ’a) list, que receba uma lista de inteiros [n1, n2, . . . , nk] e produza uma lista [c1, c2, . . . , ck],
sendo cada ci o número de Church que corresponde ao inteiro ni, 1 ≤ i ≤ k.

4

4. (10 Pontos) Em C++ o polimorfismo paramétrico é chamado de templates. Java também possui esse
tipo de polimorfismo. Nesta linguagem, o polimorfismo paramétrico é chamado de generics. Abaixo
temos dois programas, muito parecidos, um implementado em C++, e o outro implementado em Java:

#include <vector>

class C {
 public:
 int i;
};

int main () {
 std::vector<int> vi;
 for (int i = 0; i < 10; i++) {
 vi.push_back(i);
 }
 for (int i = 0; i < vi.size(); i++) {
 printf("-> %d\n", vi[i]);
 }

 std::vector<C> vc;
 for (int i = 0; i < 10; i++) {
 C c;
 c.i = i;
 vc.push_back(c);
 }
 for (int i = 0; i < vc.size(); i++) {
 printf("-> %d\n", vc[i].i);
 }
 return 0;
}

import java.util.Vector;

class C {
 public int f;
}

public class Templates {
 public static void main (String args[]) {
 Vector<Integer> vi = new Vector<Integer>();
 for (int i = 0; i < 10; i++) {
 vi.add(i);
 }
 for (int i = 0; i < vi.size(); i++) {
 System.out.println("-> " + vi.get(i));
 }

 Vector<C> vc = new Vector<C>();
 for (int i = 0; i < 10; i++) {
 C c = new C();
 c.f = i;
 vc.add(c);
 }
 for (int i = 0; i < vc.size(); i++) {
 System.out.println("-> " + vc.get(i).f);
 }
 }
}

C++ Java

Enquanto aqui inserimos o tipo
primitivo diretamente, aqui ele
é antes transformado em uma
instância de Integer, que é um
tipo composto.

Em C++ é posśıvel termos estruturas polimórficas (templates) que acomodem tipos primitivos, como
vc no programa acima. Em Java, por outro lado, tal não é posśıvel. Uma estrutura polimórfica
(generic), recebe somente referências para objetos. Assim, no programa Java acima, quando escrevemos
vi.add(i), sendo i um tipo primitivo, temos o chamado “encaixotamento”(boxing) de i. Em outras
palavras, um objeto do tipo Integer é criado para comportar a variável i. É esse objeto, e não a
própria variável i, que termina sendo inserida no vetor polimórfico. Note que em Java não é nem mesmo
posśıvel declararmos um vetor polimórfico parametrizado por um tipo primitivo, como Vector<int>,
por exemplo.

Nesta questão você deve explicar a que se deve esta restrição da linguagem Java 1. A resposta está
relacionada à forma como templates e generics são implementados em cada linguagem.

1A linguagem não suporta polimorfismo paramétrico sendo o parâmetro um tipo primitivo. Somente tipos compostos, isto
é, referências, podem ser parâmetros.

5

5. Esta questão refere-se à função halve, implementa em SML, e mostrada logo abaixo:

fun halve nil = (nil, nil)
| halve [a] = ([a], nil)
| halve (a::b::cs) =
let

val (x, y) = halve cs
in
(a::x, b::y)

end

(a) (1 Pontos) qual o tipo da função halve?

(b) (1 Ponto) qual o resultado de halve [1, 2, 3]?

- halve [1, 2, 3] =

(c) (8 Pontos) Prove que se L for uma lista, então halve L produz duas listas, L1 e L2, sendo que
length L = length L1 + length L2. Sua prova deve ser simples, porém formal.

6

6. As funções desta questão devem ser escritas sem que sejam utilizadas as funções foldr, foldl e map.

(a) (3 Pontos) Defina a função mymap, que tenha o mesmo tipo e comportamento de map. Por exemplo:

- mymap (fn x => x * x) [2, 3, 4, 5];
val it = [4,9,16,25] : int list
- mymap (fn x => x ^ ".") ["Viver nao eh preciso", "Navegar eh preciso"];
val it = ["Viver nao eh preciso.","Navegar eh preciso."] : string list

(b) (2 Pontos) Qual o tipo de mymap?

(c) (3 Pontos) Defina a função myfoldr, que tenha o mesmo tipo e comportamento de foldr. Por
exemplo:

- myfoldr (op +) 0 [2, 3, 4, 5];
val it = 14 : int
- foldr (fn(x, y) => x ^ " " ^ y) "" ["a", "lingua", "eh", "minha", "patria"];
val it = "a lingua eh minha patria " : string

(d) (2 Pontos) Qual o tipo de myfoldr?

7

