
Primeira Prova de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1



1. Todas as respostas abaixo devem ser justificadas com base nas observações a seguir. Na linguagem de
programação C, a expressão 2 == 1 + 1 é sintaticamente válida, e seu valor é 1. Em SML a expressão
equivalente 2 = 1 + 1 também é válida. Em C, a expressão (2 == 1) + 1 também é válida, mas em
SML a expressão equivalente (2 = 1) + 1 não é sintaticamente aceitável.

(a) (2 Pontos) Na linguagem de programação C, dentre os operadores ==, e +, qual deles possui
maior precedência?

(b) (2 Pontos) Por que a expressão (2 = 1) + 1 não é válida em SML?

(c) (2 Pontos) Qual é a precedência relativa entre os operadores = e + em SML?

(d) (2 Pontos) A expressão (2 = 1) + 1 é válida em C? Em caso afirmativo, qual o seu valor? Em
caso negativo, justifique.

(e) (2 Pontos) Por que as expressões 2 == 1 + 1 e (2 == 1) + 1 não geram os mesmos valores em
C?

2



2. (10 Pontos) O problema de mostrar que uma gramática é amb́ıgua, ou que ela não é amb́ıgua, é
indecid́ıvel em geral. Por outro lado, é posśıvel mostrar que algumas gramáticas simples não são
amb́ıguas. Considere a gramática abaixo:

i 〈S〉 ::= 〈G〉 〈N〉
ii | 〈N〉
iii 〈G〉 ::= + | −
iv 〈N〉 ::= 〈D〉 〈N〉
v | 〈D〉
vi 〈D〉 ::= 1

Prove que essa gramática não é amb́ıgua. Para lhe auxiliar na explicação da prova, as regras de
produção foram numeradas.

3



3. (10 Pontos) Considere o programa abaixo, escrito em Python:

>>> def f(x):
... if x:
... return f
...
>>> f(True)
<function f at 0x652b0>

Esse programa implementa uma função f que retorna a si mesma. É posśıvel escrever uma função, em
SML, que retorne a si mesma? Se sua resposta for afirmativa, demonstre-a com um exemplo. Se sua
resposta for falsa, explique porque não é posśıvel escrever tal função.

1 Ponto Extra: o que significa o desenho abaixo?

4



4. (10 Pontos) Considere a definição de uma árvore binária em SML:

datatype ’data tree =
Empty |
Node of ’data tree * ’data * ’data tree

O restante desta questão refere-se a essa definição:

(a) (2 Pontos) Declare a árvore abaixo, em SML, isto é, val t = ...:

"a"

"b"

(b) (3 Pontos) A função abaixo converte uma árvore para uma lista:

fun listall Empty = nil
| listall (Node (x, y, z)) = listall x @ y :: listall z;

Qual é o tipo de função listall?

(c) (3 Pontos) A função abaixo é tal que foldTree f x t = foldr f x (listall t). Qual é o tipo
de foldTree?

fun foldTree f x Empty = x
| foldTree f x (Node (t1, y, t2)) =
let
val v1 = foldTree f x t2
val v2 = f(y, v1)
val v3 = foldTree f v2 t1

in
v3

end

(d) (2 Pontos) A implementação de dup, abaixo, compara foldTree e listall, retornando uma dupla
com os resultados que essas duas funções produzem:

fun dup f s t = (foldr f s (listall t), foldTree f s t)

Qual é o tipo de dup?

5



5. Esta questão refere-se a seguinte expressão lâmbda: (λx.λy.yx) y (λx.x) y

(a) (5 Pontos) Encontre a forma normal dessa expressão, mostrando, explicitamente, todos os passos
de sua resolução.

(b) (1 Ponto) A associatividade de aplicação de funções no cálculo lâmbda é a mesma que a associa-
tividade de aplicações de funções em SML. Essa associatividade é da esquerda-para-a-direita, ou
da direta-para-a-esquerda? No primeiro caso, temos que e1 e2 e3 = (e1 e2) e3, no segundo, temos
que e1 e2 e3 = e1 (e2 e3).

(c) (4 Pontos) Se a associatividade de aplicações de funções no cálculo lâmbda fosse o contrário do
que você respondeu na questão anterior, qual seria a forma normal de (λx.λy.yx) y (λx.x) y?
Novamente, faça todas as substituições explicitamente, assumindo a associatividade diferente.

6



6. O registro de ativação de uma função é a área de memória que armazena todas as informações ne-
cessárias para o correto funcionamento daquela função. As três questões abaixo referem-se à esses
registros de ativação. Em cada questão, você deve fornecer um pequeno exemplo de código em SML,
e explicar porque o seu exemplo atende o que se pede na questão.

(a) (3 Pontos) Escreva o mais curto exemplo, em SML/NJ em que você consiga pensar, que não
funcionaria se implementado usando um registro de ativação alocado estaticamente. Explique
porque este exemplo falharia.

(b) (3 Pontos) Escreva o mais curto exemplo, em SML/NJ, em que você consiga pensar, que não
funcionaria corretamente caso SML/NJ não implementasse registros de ativação usando links de
aninhamento. Isto é, os registros de ativação podem ser implementados via uma pilha, como é
normalmente feito, mas não possuem link de aninhamento.

(c) (4 Pontos) Escreva o mais curto exemplo que você consiga pensar que não funcionaria se todos
os dados armazenados no registro de ativação de uma função f , em SML, fossem desalocados
imediatamente após o retorno de f .

7


