
Primeira Prova de Linguagens de Programação
- DCC024W -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1



1. (10 Pontos) Considere a gramática abaixo, que está implementada em Prolog. Essa gramática descreve
expressões condicionais na linguagem SML. Nesse exemplo simplificado, estamos assumindo que os
únicos valores que um programa pode retornar são 0 ou 1:

ifexp --> [if], cond, [then], ifexp, [else], ifexp.
ifexp --> [0].
ifexp --> [1].
cond --> [true].
cond --> [false].

Modifique essa gramática, adicionando um atributo D a ela, para que ela seja capaz de contar o número
de zeros (0) em uma expressão condicional. Por exemplo:

| ?- ifexp(D, [if, true, then, if, false, then, 1, else, 1, else, 0], []).

D = 1

| ?- ifexp(D, [if, true, then, if, false, then, 0, else, 1, else, 0], []).

D = 2

| ?- ifexp(D, [if, true, then, if, false, then, 0, else, 0, else, 0], []).

D = 3

2



2. (10 Pontos) Escreva uma função toDig, de tipo string -> string list, que converta uma string em
uma lista de d́ıgitos. Por exemplo:

- toDig "123";
val it = ["um","dois","tres"] : string list
- toDig "";
val it = [] : string list
- toDig "001001";
val it = ["zero","zero","um","zero","zero","um"] : string list

Essa função deve ser capaz de lidar com qualquer string de entrada. Se ela receber uma string contendo
caracteres que não são números, então ela deve imprimir ??? para cada um desses caracteres. Por
exemplo:

- toDig "A23";
val it = ["???","dois","tres"] : string list

É posśıvel que você queira usar a função ord, de tipo char -> int em sua solução. Essa função
converte um caracter para o seu código ASCII. Por exemplo:

- ord #"0";
val it = 48 : int
- ord #"1";
val it = 49 : int
- ord #"2";
val it = 50 : int

Outra função que você pode achar interessante é explode, de tipo string -> char list, que recebe
uma string e a converte para uma lista de caracteres:

- explode "dcc024";
val it = [#"d",#"c",#"c",#"0",#"2",#"4"] : char list

3



3. Uma linguagem de programação L1 é dita mais dinâmica que outra linguagem de programação L2 se
programas escritos em L1 realizam (ou, doutro modo, sofrem) mais testes em tempo de execução.

• (5 pontos) Qual linguagem é mais dinâmica, Java ou C++? Justifique a sua resposta explicando
quais testes são realizados por uma linguagem, e não o são pela outra.

• (5 pontos) Qual linguagem é mais dinâmica, SML ou Python? Novamente, justifique a sua
resposta, explicando quais testes são realizados, em tempo de execução, por uma linguagem, e
não pela outra.

4



4. (10 Pontos) Quase todas as linguagens de programação moderna possuem escopo estático, o seja, o
escopo de um nome é definido durante a compilação. O outro tipo de escopo, chamado escopo dinâmico,
está presente na primeira versão da linguagem Lisp, e em APL, a linguagem inventada por Kenneth
Iverson para manipular arranjos. Por que o escopo dinâmico é hoje tão pouco utilizado? Ilustre seus
argumentos com código sintaticamente válido em alguma linguagem de programação.

5



5. (10 Pontos) Considere o tipo algébrico option e a função findName, de tipo string -> int option.
O tipo option é definido logo abaixo.

- datatype ’a option = NONE | SOME of ’a

A implementação de findName não é importante para essa questão. Considere, contudo, que essa
função procure por um dado nome em um banco de dados, e retorne o CPF associado a esse nome, ou
NONE quando o nome não for encontrado. Por exemplo:

- findName "Eliseu LaMarca Passos";
val it = SOME 454886429 : int option
- findName "Augusto D Andrade";
val it = NONE : int option

Nessa questão você deve escrever uma função cpfToString, cujo tipo seja string -> string. Essa
função lê um nome, procura pelo mesmo usando findName e retorna a string "CPF nao encontrado",
ou "CPF = xxxxxxxxx", sendo xxxxxxxxx o CPF relacionado ao nome dado. Por exemplo:

- cpfToString "Eliseu LaMarca Passos";
val it = "CPF = 454886429" : string
- cpfToString "Augusto D Andrade";
val it = "CPF nao encontrado" : string

É posśıvel que você queira lançar mão da função Int.toString, de tipo int -> string, que converte
inteiros para strings. Por exemplo:

- Int.toString 11;
val it = "11" : string

6



6. Nós podemos representar números inteiros usando o cálculo λ. Uma das convenções mais comuns é
assumir que um número n é uma função que recebe dois argumentos, e aplica o primeiro ao segundo
n vezes. Por exemplo:

• 0 = λs.λz.z

• 1 = λs.λz.sz

• 2 = λs.λz.s(sz)

(a) (5 pontos) Considere a função sucessor, SUCC = λn.λy.λx.y(n y x). Essa função recebe uma
função descrevendo um número n, e retorna a função correspondente a n + 1. Mostre os passos
de redução de SUCC 1, ou, doutro modo: (λn.λy.λx.y(n y x))(λs.λz.sz).

(b) (5 pontos) Usando a função sucessor, SUCC = λn.λy.λx.y(n y x), defina a função ADD, que
soma dois números.

7


