
Primeira Prova de Linguagens de Programação
- DCC024W -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1



1. (10 Pontos) A gramática abaixo reconhece expressões com parênteses balanceados:

〈E〉 ::= ′(′ 〈E〉 ′)′ 〈E〉
| ε

O śımbolo ε representa a cadeia vazia. Implemente uma gramática lógica em Prolog que reconheça
a mesma linguagem, e que conte o número de parênteses abertos. Por exemplo, assumindo-se que a
gramática foi implementa em um arquivo chamado tree depth, as seguintes buscas devem ser válidas:

?- consult(tree_depth).
% tree_depth compiled 0.01 sec, 260 bytes
true.

?- tree(D, [’(’, ’)’], []).
D = 1 ;
false.

?- tree(D, [’(’, ’(’, ’)’, ’)’, ’(’, ’)’], []).
D = 3 ;
false.

?- tree(D, [’(’, ’)’, ’(’, ’(’, ’)’, ’)’, ’(’, ’)’], []).
D = 4 ;
false.

2



2. (10 Pontos) Implemente, em SML, a função stripCommas, cujo tipo é string -> string. Essa função
recebe uma string e retorna outra string que é uma cópia da primeira, exceto que todas as v́ırgulas
foram removidas. Por exemplo:

- stripCommas "o pato, que eh legal, fugiu!";
val it = "o pato que eh legal fugiu!" : string
-
- stripCommas ",,,,,";
val it = "" : string

Você pode achar útil, para esse exerćıcio, usar as funções predefinidas implode e explode. A pri-
meira, de tipo char list -> string, recebe uma lista de caracteres, e produz uma string com esses
caracteres. A segunda função, de tipo string -> char list, converte uma string para uma lista de
caracteres.

3



3. (10 Pontos) A única operação que podemos realizar sobre tuplas, em SML, é a indexação. Essa é a
operação que nos permite ler o campo de uma tupla:

- val pair = (13, 29);
val pair = (13,29) : int * int
- #1 pair;
val it = 13 : int
- #1 pair + #2 pair;
val it = 42 : int

SML permite que somente literais inteiros sejam usados como ı́ndices de tuplas. As seguintes chamadas
resultam em erros:

- (* Uso de uma expressao aritmetica como indice de tupla *)
- #(1 + 1) pair;
stdIn:5.2-5.4 Error: syntax error: deleting LPAREN INT
-
- (* Uso de uma variavel como indice de tupla *)
- val x = 1;
val x = 1 : int
- #x pair;
stdIn:6.1-6.8 Error: operator and operand don’t agree [record labels]

Qual a razão por trás dessa restrição de SML? Em outras palavras, quando projetando a sua linguagem,
por que Robin Milner decidiu não permitir que expressões gerais de tipo inteiro pudessem ser usadas
para indexar tuplas?

4



4. (10 pontos) A linguagem SML não permite que o usuário defina śımbolos sobrecarregados, ao contrário
de linguagens tais como C++ e Java. Por outro lado, a seguinte sequência de comandos é perfeitamente
válida em SML:

- fun op + (a, b) = a - b;
val + = fn : int * int -> int
- 3 + 4;
val it = ~1 : int

Por que não podemos dizer que o śımbolo ’+’ foi sobrecarregado nesse caso?

5



5. Essa questão refere-se ao tipo algébrico composite, que pode representar um elemento polimórfico, ou
uma tupla de dois composites. Para um exemplo, veja as declarações abaixo, que criam duas variáveis
do tipo composite, x e y:

val x = COMP (ELEM 1, COMP (ELEM 2, ELEM 4))
val y = COMP (x, x)

COMP

ELEM

1

COMP

ELEM

2

ELEM

4

val y = COMP

COMP

ELEM

1

COMP

ELEM

2

ELEM

4

(a) (3 pontos) Complete a declaração de composite abaixo:

- datatype ’a composite =

(b) (5 pontos) Crie uma função sum do tipo int composite -> int que retorne a soma de todos os
elementos em uma estrutura do tipo int composite.

(c) (1 ponto) Que forma de polimorfismo é utilizada pelo tipo composite?

(d) (1 ponto) A linguagem C possui a forma de polimorfismo que você respondeu na questão anterior?

6



6. Esta questão refere-se ao programa abaixo, escrito na linguagem C:

1 #include <stdio.h>

2 #include <stdlib.h>

3 typedef struct ThreeDPointType { int x; int y; int z; } ThreeDPoint;

4 typedef struct DateType { int day; int month; int year; } Date;

5 int main() {

6 ThreeDPoint *p = (ThreeDPoint*)malloc(sizeof(ThreeDPoint));

7 Date *d;

8 char a[] = {7, 0, 0, 0, 7, 0, 0, 0, 30, 7, 0, 0};

9 p->x = 7;

10 p->y = 7;

11 p->z = 1822;

12 d = (struct ThreeDPoint*)p;

13 printf("%d, %d, %d\n", d->day, d->month, d->year);

14 d = (struct ThreeDPoint*)a;

15 printf("%d, %d, %d\n", d->day, d->month, d->year);

16 }

Esse programa, se compilado e executado, imprimirá a seguinte sáıda:

7, 7, 1822
7, 7, 1822

(a) (5 pontos) Esse programa evidencia que C é uma linguagem fracamente tipada. Por que?

(b) (2 pontos) O resultado impresso depende do compilador utilizado para compilar o programa?
Justifique a sua resposta.

(c) (3 pontos) Esse tipo de contrução sem dúvida torna os programas escritos em C mais dif́ıceis de
serem entendidos. Ainda assim essas coerções inseguras são úteis. Descreva uma situação em que
você poderia usar esse tipo de padrão de programação.

7


