
Primeira Prova de Linguagens de Programação
- DCC024W -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1

1. Esta questão refere-se ao programa abaixo, escrito em Python:

def div(a, b):

if b == 0:

return "Nao sei dividir"

else:

return a / b

>>> div(40, 3)

13

>>> div(40, 0)

’Nao sei dividir’

Esse programa evidencia a tipagem dinâmica de Python.

(a) (2 Pontos) O que é tipagem dinâmica?

(b) (2 Pontos) Não é posśıvel construir uma função exatamente como div em SML, pois essa linguagem
é estaticamente tipada. Por que a tipagem estática é um empecilho para a construção de uma
função como div em SML?

(c) (3 Pontos) Defina um tipo algébrico RESULT que seja a união de dois tipos, os inteiros e os strings.
O tipo RESULT terá dois rótulos: INT associado aos inteiros, e STR, associado aos strings.

(d) (3 Pontos) Use o tipo algébrico RESULT, definido na questão anterior, para escrever uma função
sml div, cujo tipo seja int * int -> RESULT. Por exemplo:

- sml_div(3, 0);
val it = STR "Nao sei dividir" : RESULT
- sml_div(30, 4);
val it = INT 7 : RESULT

O operador de divisão inteira em SML é div.

2

2. Esta questão refere-se à função partition, cuja implementação em SML é dada logo abaixo:

fun partition (pivot, nil) = (nil,nil)
| partition (pivot, first :: others) =

let
val (smalls, bigs) =
partition(pivot, others)

in
if first < pivot
then (first::smalls, bigs)
else (smalls, first::bigs)

end;

(a) (2 Pontos) Qual é o tipo da função partition? Assuma que o operador < possui tipo int * int
-> bool.

(b) (8 Pontos) Se L é uma lista, e o resultado de partition(, L) são duas listas L1 e L2, então
prove que o tamanho de L é igual à soma dos tamanhos de L1 e L2.

3

3. Esta questão refere-se à função lógica NAND, também conhecida como “conjunção negada”. Uma im-
plementação desta função, em SML, produziria os seguintes resultados:

- NAND(true, true);
val it = false : bool
- NAND(true, false);
val it = true : bool
- NAND(false, true);
val it = true : bool
- NAND(false, false);
val it = true : bool

(a) (4 Pontos) Implemente a função NAND, de tipo bool * bool -> bool, de forma que a sua imple-
mentação retorne os mesmos resultados que aqueles vistos na sessão de SML logo acima.

(b) (6 Pontos) Alguns operadores binários, quando usados nas funções foldr e foldl retornam os
mesmos resultados. Por exemplo:

- foldr (op +) 0 [1,2,3,4];
val it = 10 : int
- foldl (op +) 0 [1,2,3,4];
val it = 10 : int

Contudo, há operadores que retornam resultados diferentes. Por exemplo:

- foldr (op ^) "" ["a", "b", "c"];
val it = "abc" : string
- foldl (op ^) "" ["a", "b", "c"];
val it = "cba" : string

A sua implementação de NAND retorna o mesmo resultado tanto para foldl quanto para foldr? Jus-
tifique a sua resposta.

4

4. Esta questão refere-se ao programa abaixo, implementado em C. Este programa utiliza funções ani-
nhadas. Tais funções não são parte de ANSI C, mas o compilador gcc as suporta, se a opção
-fnested-functions for passada em linha de comando.

1 #include <stdio.h>

2

3 int sum(int x, int limit) {

4 int prod(int begin) {

5 if (begin >= limit)

6 return 1;

7 else

8 return begin * prod(begin + 1);

9 }

10 return prod(x);

11 }

12

13 int main(int argc, char** argv) {

14 printf("sum(2, 1) = %d\n", sum(2, 1));

15 }

(a) (4 Pontos) Como é posśıvel que a implementação da função prod tenha acesso ao valor da variável
limit, sendo que essa variável não foi declarada no escopo de prod? Explique como o valor de
limit pode ser encontrado a partir do registro de ativação de prod.

(b) (6 Pontos) Desenhe todos os registros de ativação ativos quando a linha 6 do programa acima é
atingida pelo fluxo de execução. Procure lembrar-se de todas as informações que são armazenadas
em registros de ativação. Dica: abaixo vê-se uma sessão do depurador gdb:

~/Fernando$ gcc -g -fnested-functions nested.c

~/Fernando$ gdb a.out

(gdb) break nested.c:6

Breakpoint 1 at 0x1f91: file nested.c, line 6.

(gdb) run

Breakpoint 1, prod (begin=2) at nested.c:6

(gdb) backtrace

#0 prod (begin=2) at nested.c:6

#1 0x00001f7c in sum (x=2, limit=1) at nested.c:10

#2 0x00001fd8 in main (argc=1, argv=0xbffff738) at nested.c:14

(gdb) quit

5

5. Esta questão refere-se à gramática lógica abaixo, implementada em Prolog, que reconhece listas de a’s:

list --> [’[’], seq, [’]’].
list --> [’[’], [’]’].

seq --> [a], seq.
seq --> [a].

(a) (2 Ponto) Desenhe uma posśıvel árvore de derivação para a string ’[’, a, a, a, ’]’.

(b) (1 Ponto) Sabendo que a gramática mostrada nesta questão não é amb́ıgua, além da árvore que
você desenhou no item anterior, quantas outras árvores de derivação existem para a string [’[’,
a, a, a, ’]’, no mı́nimo?

(c) (7 Pontos) Escreva uma nova gramática, inserindo atributos na gramática lógica mostrada acima.
A nova gramática deve ser capaz de contar o número de elementos em listas. Como um exemplo,
essa nova gramática deverá proceder como na sessão prolog abaixo:

?- list(N, [’[’, a, a, a, ’]’], []).
N = 3.

?- list(N, [’[’, ’]’], []).
N = 0.

?- list(N, [’[’, a, ’]’], []).
N = 1.

6

6. Dizemos que uma linguagem é segura quando esta linguagem não permite que operações sejam aplicadas
a argumentos que não possuam os tipos previstos por estas operações. C e C++ são linguagens
inseguras, pois muitas vezes valores armazenados em memória são utilizados sem qualquer fiscalização
de seus tipos.

(a) (5 Pontos) Escreva um programa em C ou C++ que evidencie o caráter inseguro de uma dessas
linguagens.

(b) (5 Pontos) Existem linguagens mais antigas que C ou C++ que são consideradas seguras, logo, a
possibilidade de uso inseguro de tipos não é devido à ignorância sobre os perigos dessa abordagem.
ML, por exemplo, já havia sido definida dez anos antes de C++, porém enquanto ML é uma
linguagem considerada segura, C++ não é. Cite um fator que motivou o desenho inseguro de
C++.

7

