
Primeira Prova de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5

Questão Extra (0.5 Pontos): Escolha somente um desafio: (i) Em que páıs nasceu o cientista que é
creditado como o inventor do algoritmo merge sort? (ii) Cite seis estórias de Hans Christian Andersen.

1

1. Esta questão diz respeito a uma função oneTrue, que, quando implementada em SML, recebe um
predicado e uma lista, e retorna verdade se existe, na lista, algum elemento que torna verdadeiro o
predicado. O tipo dessa função é (’a -> bool) -> ’a list -> bool. Por exemplo:

- oneTrue (fn x => x < 3) [4, 5, 6];

val it = false : bool

- oneTrue (fn x => x < 3) [1, 5, 2, 6];

val it = true : bool

- oneTrue (fn x => x = "oi") ["ai", "ei", "oi"];

val it = true : bool

(a) (5 Pontos) Implemente essa função em SML, sem usar as funções de alta ordem map, foldr ou
foldl. Não assuma a existência de qualquer função pré-definida em SML.

(b) (5 Pontos) Implemente oneTrue em uma linha de código, usando para tanto qualquer combinação
das funções map, foldr e foldl. Você não precisa usar todas essas funções, mas deve usar pelo
menos uma delas.

2

2. Esta questão compara dois programas de semântica similar, escritos em C e Java. Para responder
as perguntas que se seguem, procure ter em mente conceitos como registro de ativação e Tipagem
Fraca/Forte.

(a) (5 Pontos) Considere o programa abaixo:

#include <stdio.h>

void function() {

int v[0];

v[3] = v[3] + 4;

}

int main() {

int x;

x = 13;

function();

x++;

printf("%d\n",x);

}

Esperar-se-ia que o programa acima imprimisse a sáıda 14. Porém, ao ser executado em uma
máquina Intel x86 com sistema operacional Linux Ubuntu, o programa imprime 13 e termina
normalmente. Porque o programa imprime 13, e não 14, como seria esperado?

(b) (5 Pontos) Considere agora, o programa abaixo, escrito em Java. Seria posśıvel obter a mesma
sáıda que aquela produzida pelo programa em C acima, desta vez usando o programa escrito em
Java?

public class Buf {

public static void function() {

int[] v = new int[0];

v[3] = v[3] + 4;

}

public static void main(String args[]) {

int x;

x = 13;

function();

x++;

System.out.println("" + x);

}

}

3

3. Esta questão faz referência a diferentes representações de valores no cálculo λ.

(a) (5 Pontos) Podemos representar números em cálculo λ como funções que recebem “dois parâmetros”,
s e z. A representação do número n aplica a função s sobre o parâmetro z um número de vezes
igual a n. Abaixo vemos algumas representações de números:

0 = λs.λz.z
1 = λs.λz.sz
2 = λs.λz.s(sz)
3 = λs.λz.s(s(sz))

Tais números são chamados Números de Church, em homenagem a Alonzo Church, o cientista
que inventou o cálculo λ. É posśıvel gerar qualquer número via essa representação, usando-se
para isso a função SUCC, que recebe a representação do número n, e produz a representação do
número n+ 1:

SUCC = λn.λy.λx.y(nyx)

Dada essa representação de número, escreva a função ADD, que receba dois números de Church,
n1 e n2, e produza a representação de n1 + n2. Comece sua função assim: ADD = λn1.λn2. . . .

(b) (5 Pontos) É posśıvel criar diferentes representações para os valores booleanos. Uma representação
bastante adotada é a seguinte:

True = λx.λy.x
False = λx.λy.y

Dada essa representação de valores booleanos, escreva uma função AND, que receba dois boolea-
nos, b1 e b2, e produza a conjunção lógica desses booleanos, segundo a tabela:

AND True True = True
AND True False = False
AND False True = False
AND False False = False

Comece a sua função com a declaração: AND = λb1.λb2. . . .

4

4. Esta questão refere-se ao tipo algébrico abaixo, que representa árvores de dois ou mais nodos:

datatype ’a Tree = Leaf

| BinNode of ’a Tree * ’a * ’a Tree

| ListNode of ’a * ’a Tree list ;

Vemos, abaixo, a definição de algumas instâncias do tipo Tree:

- val T0 = BinNode (Leaf, "oi", Leaf);

- val T1 = BinNode (Leaf, "ei", T0);

- val T2 = ListNode ("ui", [T0, T1]);

- val T3 = ListNode ("ai", [Leaf, T0, T1, T2, T0]);

(a) (2 Pontos) A definição de Tree usa um tipo de polimorfismo muito comum em SML. Cite uma
outra linguagem de programação que possui essa forma de polimorfismo. Para que sua questão
seja avaliada, você precisa mostrar um exemplo de uso desse polimorfismo na linguagem escolhida.

(b) (5 Pontos) Escreva uma função contains, de tipo ’’a -> ’’a Tree -> bool, que receba um
elemento e uma árvore, e retorne verdadeiro caso o elemento esteja na árvore. A sua função deve
retornar falso caso o elemento não esteja presente na árvore. Por exemplo, considerando-se as
definições acima, teŕıamos:

- contains "ai" T3 ;

val it = true : bool

- contains "ui" T3;

val it = true : bool

- contains "ui" T1;

val it = false : bool

(c) (3 Pontos) o tipo de contains é ’’a -> ’’a Tree -> bool. O que significa o duplo apóstrofo na
definição de a?

5

5. Esta questão refere-se à gramática abaixo, que descreve expressões aritméticas envolvendo somas e
multiplicações de números binários:

expr --> mulexpr, [+], expr.

expr --> mulexpr.

mulexpr --> number, [*], mulexpr.

mulexpr --> number.

number --> digit, number.

number --> digit.

digit --> [0].

digit --> [1].

(a) (3 Pontos) Desenhe todas as árvores de derivação
posśıveis que a gramática acima pode gerar para
a cadeia de caracteres: 1, +, 1, +, 1. Informe
explicitamente, quantas árvores você encontrou.

(b) (2 Pontos) Qual dos operadores, (+) ou (*) possui maior precedência? Justifique a sua resposta.

(c) (5 Pontos) Modifique a gramática acima, para que ela seja capaz de computar o valor de expressões
aritméticas na base 2. Efetivamente, você deverá adicionar atributos à gramática. Esses atributos
irão computar o valor de cada cadeia válida de caracteres. Por exemplo:

?- expr(N, [1, 1, 0, *, 1, 0], []).

N = 12 ;

false.

?- expr(N, [1, 1, 0, +, 1, 0], []).

N = 8 ;

false.

No exemplo acima, o atributo N guarda o valor, em base 10, representado pelas strings escritas
em base 2. Em outras palavras, 1102 + 102 = 11002 = 1210.

6

6. O Link de Aninhamento é uma estrutura usada para permitir que uma função aninhada possa fazer
referência a variáveis declaradas no corpo da função aninhadora. Como um exemplo, considere o
programa abaixo, implementado em Gnu C:

int sum(int x, int limit) {

int prod(int begin) {

if (begin >= limit)

return 1;

else

return begin * prod(begin + 1);

}

return prod(x);

}

int main(int argc, char** argv) {

printf("sum(2, 1) = %d\n", sum(2, 1));

}

A função prod precisa utilizar um link de aninhamento para encontrar o valor da variável limit, pois
essa variável não é local a prod.

(a) Em cada uma das situações abaixo, determine como é descoberto o endereço para onde aponta o
link de aninhamento da função g, logo que ela é ativada:

i. (2 Pontos) A função g não está aninhada dentro de alguma outra função.

ii. (2 Pontos) g está aninhada dentro de uma função f , e g é chamada pela primeira vez.

iii. (2 Pontos) A função g está aninhada dentro de uma função f , e g é chamada recursivamente.

(b) (4 Pontos) O link de aninhamento é necessário em linguagens de programação que permitem
a declaração de funções aninhadas. Por outro lado, mesmo linguagens que não possuem esse
recurso, como ANSI C, ainda permitem que variáveis livres existam. Isso ocorre devido às
variáveis globais:

int counter;

void incCounter() {

counter++; // counter eh variavel livre no escopo de incCounter

}

int main() {

counter = 0;

incCounter();

printf("Counter = %d\n", counter);

}

Por que não é necessário um link de aninhamento para encontrar-se o valor de variáveis globais?

7

