Primeira Prova de Linguagens de Programacao
- DCC024B -
Ciéncia da Computacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:

e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.
e Quando escrever cédigo, a sintaxe correta é importante.

e Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.

e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e A prova nao é dificil, ela é divertida, entao aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questdao 1 | Questao 2 | Questdo 3 | Questdo 4 | Questao 5

Questao Extra (0.5 Pontos): formigas macho em geral ndo possuem asas. Cite mais duas familias de
insetos com elementos que nao tém asas em qualquer momento da vida. Nao vale citar dois elementos da
mesma familia como formiga satva e formiga doceira.

1. A figura abaixo mostra uma parte do Triangulo de Pascal. O triangulo estd organizado em uma matrix
diagonal. A notagédo (4,j),7 > j denota a linha ¢ e a coluna j da matriz:

o 1 2 3 4 5
01
111 1
21 2
311 3
411 4 4 1
5(1 &5 10 10 5 1

(a) (7 Pontos) Escreva, em ML, uma func¢do ptriangle, de tipo int * int— > int, que receba dois
inteiros, i e j, e produza o elemento na posi¢ao (i,j) do Triangulo de Pascal. Por exemplo:

- ptriangle(2, 2);
val it = 1 : int
- ptriangle(5, 2);
val it = 10 : int
- ptriangle(0, 0);
val it = 1 : int

(b) (3 Pontos) Qual é a complexidade assimptética da fungao que vocé escreveu acima? Descreva essa
complexidade em termos de i e j, os parametros passados para ptriangle.

2. Normalmente os valores alocados no registro de ativacao de uma funcao nao podem ser utilizados
depois que essa funcao retorna. Linguagens que permitem esse tipo de uso dao margem a bugs de
programacao dificeis de serem encontrados.

(a) (5 Pontos) Escreva um programa em C que contém um erro de programacao. Tal erro deve ser
causado pelo uso de uma posi¢ao de memoria alocada durante a ativagao de uma funcao, e nao
mais vélida apds o fim de tal ativagao.

(b) (5 Pontos) Ao contrério de C, ML permite que valores locais a uma fungio sejam usados apdés o
retorno daquela funcao. Escreva um programa que evidencie essa propriedade da linguagem.

3. Reducgoes Beta sao o mecanismo de computagao usado no calculo lambda. Uma Redugao Beta enuncia
que a aplicagdo (Az.e)y pode ser ré-escrita como e[z — y|. Essa tltima notagao significa que toda
ocorréncia de = deve ser substituida por y dentro da expressao e. Caso uma expressao lambda nao
possa mais sofrer redugoes beta, diz-se que tal expressao esta em forma normal.

(a) (3 Pontos) Escreva a forma normal da expressdo: (Ax.\y.zy)y

(b) (4 Pontos) Escreva uma expressao lambda que possua uma forma normal maior que seu tamanho
original. Em outras palavras, uma vez reduzida, o tamanho dessa expressao lambda deve crescer.
Mostre a expressao lambda original, e sua expressao em forma normal.

(¢) (3 Pontos) Escreva uma expressao lambda que nao tenha forma normal.

4. Idris é uma linguagem de programacao funcional. Sintaticamente, Idris é parecida com Haskell, outra
linguagem funcional. Pragmaticamente, ambas essas linguagens se parecem com ML, a linguagem
funcional vista no curso DCC024. Idris possui um tipo List, que pode ser usado da seguinte forma:

Idris> [1,2,3]

[1, 2, 3] : List Integer

Idris> ["a", "b", "c"]

["a", "b", "c"] : List String
Idris> [1,2,3] ++ [4,5,6]

[1, 2, 3, 4, 5, 6] : List Integer
Idris> [2.76] ++ [3.14, 6.28]
[2.76, 3.14, 6.28] : List Double
Idris> 2.76 :: [3.14, 6.28]
[2.76, 3.14, 6.28] : List Double

O operador ++ é declarado da seguinte forma:

(#+) : List a -> List a -> List a
(++) Nil ys = ys
(++) (x :: xs) ys = X :: Xs ++ ys

(a) (3 Pontos) A implementagao de List utiliza um tipo de polimorfismo. Que tipo de polimorfismo
é este?

(b) (3 Pontos) Escreva o tipo do operador : :

(c) (4 Pontos) A gramética abaixo descreve expressoes sobre listas:

Essa gramaética permite a criacao de expressoes como [x]::[x], [x]::x ou x++x,, que nao sao
validas, pois vao contra os tipos de :: e ++. Modifique a gramatica acima para que ela permita
somente a criacao de expressoes validas.

5. Esta questao refere-se & implementagao do tipo algébrico drvore. Essa implementagao pode ser vista
logo abaixo:

datatype Tree = Leaf | Node of Tree * int * Tree

(a) (3 Pontos) Qual é o tipo da funcfo toList, cuja implementagao pode ser vista logo abaixo?

fun toList Leaf = nil
| toList (Node (L, e, R)) = e :: toList L @ (toList R)

(b) (7 Pontos) Implemente uma fun¢ao rm, de tipo int -> int Tree -> int Tree, que remove todas
as ocorréncias de um inteiro e de uma instancia de ’a tree. Vocé pode usar as seguintes fungoes
em sua implementagao:

val ins = fn : int -> int Tree -> int Tree
val union = fn : int Tree -> int Tree -> int Tree

A fungao ins recebe um elemento e e uma arvore t, e produz uma nova arvore contendo e e todos
os elementos de t. A fungao union, por sua vez, recebe duas arvores, t0 e t1, e produz uma nova
arvore que contém todos os elementos de t0 e de t1.

Abaixo, véem-se alguns exemplos de uso:

- val t1 = ins 2 Leaf ;

val t1 = Node (Leaf,2,Leaf) : Tree

- val t2 = ins 4 Leaf ;

val t2 = Node (Leaf,4,Leaf) : Tree

- tolList t2 ;

val it = [4] : int list

- val t3 = union t1 t2;

val t3 = Node (Node (Leaf,2,Leaf),4,Leaf) : Tree
-val t4 = rm 2 t3 ;

val t4 = Node (Leaf,4,Leaf) : Tree

