
Primeira Prova de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5

Questão Extra (0.5 Pontos): formigas macho em geral não possuem asas. Cite mais duas famı́lias de
insetos com elementos que não têm asas em qualquer momento da vida. Não vale citar dois elementos da
mesma famı́lia como formiga saúva e formiga doceira.

1



1. A figura abaixo mostra uma parte do Triângulo de Pascal. O triângulo está organizado em uma matrix
diagonal. A notação (i, j), i ≥ j denota a linha i e a coluna j da matriz:

0 1 2 3 4 5

0

1

2

3

4

5

1

1 1

1

1

1

1

1

1

1

1

2

3 3

4 6 4

5 10 10 5

(a) (7 Pontos) Escreva, em ML, uma função ptriangle, de tipo int ∗ int− > int, que receba dois
inteiros, i e j, e produza o elemento na posição (i, j) do Triângulo de Pascal. Por exemplo:

- ptriangle(2, 2);

val it = 1 : int

- ptriangle(5, 2);

val it = 10 : int

- ptriangle(0, 0);

val it = 1 : int

(b) (3 Pontos) Qual é a complexidade assimptótica da função que você escreveu acima? Descreva essa
complexidade em termos de i e j, os parâmetros passados para ptriangle.

2



2. Normalmente os valores alocados no registro de ativação de uma função não podem ser utilizados
depois que essa função retorna. Linguagens que permitem esse tipo de uso dão margem a bugs de
programação dif́ıceis de serem encontrados.

(a) (5 Pontos) Escreva um programa em C que contém um erro de programação. Tal erro deve ser
causado pelo uso de uma posição de memória alocada durante a ativação de uma função, e não
mais válida após o fim de tal ativação.

(b) (5 Pontos) Ao contrário de C, ML permite que valores locais a uma função sejam usados após o
retorno daquela função. Escreva um programa que evidencie essa propriedade da linguagem.

3



3. Reduções Beta são o mecanismo de computação usado no cálculo lambda. Uma Redução Beta enuncia
que a aplicação (λx.e)y pode ser ré-escrita como e[x → y]. Essa última notação significa que toda
ocorrência de x deve ser substitúıda por y dentro da expressão e. Caso uma expressão lambda não
possa mais sofrer reduções beta, diz-se que tal expressão está em forma normal.

(a) (3 Pontos) Escreva a forma normal da expressão: (λx.λy.xy)y

(b) (4 Pontos) Escreva uma expressão lambda que possua uma forma normal maior que seu tamanho
original. Em outras palavras, uma vez reduzida, o tamanho dessa expressão lambda deve crescer.
Mostre a expressão lambda original, e sua expressão em forma normal.

(c) (3 Pontos) Escreva uma expressão lambda que não tenha forma normal.

4



4. Idris é uma linguagem de programação funcional. Sintaticamente, Idris é parecida com Haskell, outra
linguagem funcional. Pragmaticamente, ambas essas linguagens se parecem com ML, a linguagem
funcional vista no curso DCC024. Idris possui um tipo List, que pode ser usado da seguinte forma:

Idris> [1,2,3]

[1, 2, 3] : List Integer

Idris> ["a", "b", "c"]

["a", "b", "c"] : List String

Idris> [1,2,3] ++ [4,5,6]

[1, 2, 3, 4, 5, 6] : List Integer

Idris> [2.76] ++ [3.14, 6.28]

[2.76, 3.14, 6.28] : List Double

Idris> 2.76 :: [3.14, 6.28]

[2.76, 3.14, 6.28] : List Double

O operador ++ é declarado da seguinte forma:

(++) : List a -> List a -> List a

(++) Nil ys = ys

(++) (x :: xs) ys = x :: xs ++ ys

(a) (3 Pontos) A implementação de List utiliza um tipo de polimorfismo. Que tipo de polimorfismo
é este?

(b) (3 Pontos) Escreva o tipo do operador ::

(c) (4 Pontos) A gramática abaixo descreve expressões sobre listas:

〈L〉 ::= 〈L〉::〈L〉
| 〈L〉++〈L〉
| [x]
| x

Essa gramática permite a criação de expressões como [x]::[x], [x]::x ou x++x,, que não são
válidas, pois vão contra os tipos de :: e ++. Modifique a gramática acima para que ela permita
somente a criação de expressões válidas.

5



5. Esta questão refere-se à implementação do tipo algébrico árvore. Essa implementação pode ser vista
logo abaixo:

datatype Tree = Leaf | Node of Tree * int * Tree

(a) (3 Pontos) Qual é o tipo da função toList, cuja implementação pode ser vista logo abaixo?

fun toList Leaf = nil

| toList (Node (L, e, R)) = e :: toList L @ (toList R)

(b) (7 Pontos) Implemente uma função rm, de tipo int -> int Tree -> int Tree, que remove todas
as ocorrências de um inteiro e de uma instância de ’a tree. Você pode usar as seguintes funções
em sua implementação:

val ins = fn : int -> int Tree -> int Tree

val union = fn : int Tree -> int Tree -> int Tree

A função ins recebe um elemento e e uma árvore t, e produz uma nova árvore contendo e e todos
os elementos de t. A função union, por sua vez, recebe duas árvores, t0 e t1, e produz uma nova
árvore que contém todos os elementos de t0 e de t1.

Abaixo, vêem-se alguns exemplos de uso:

- val t1 = ins 2 Leaf ;

val t1 = Node (Leaf,2,Leaf) : Tree

- val t2 = ins 4 Leaf ;

val t2 = Node (Leaf,4,Leaf) : Tree

- toList t2 ;

val it = [4] : int list

- val t3 = union t1 t2;

val t3 = Node (Node (Leaf,2,Leaf),4,Leaf) : Tree

- val t4 = rm 2 t3 ;

val t4 = Node (Leaf,4,Leaf) : Tree

6


