
Primeira Prova de Linguagens de Programação
- DCC024B -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5

Questão Extra (0.5 Pontos): qual é a propriedade invariante que se aplica a qualquer ponto de uma
parábola?

1

1. O programa gcc, usado em Unix para invocar o compilador de C desenvolvido pela gnu, é na verdade
um script que invoca vários outros programas. É posśıvel saber quais os programas são invocados por
gcc adicionando-se o parâmetro -v à sua linha de invocação. Cada uma das questões abaixo contém
um dos passos adotados por gcc para produzir um arquivo binário a partir de um programa fonte
hello.c, no sistema Linux. Descreva o que cada uma destas linhas faz.

(a) gcc -E hello.c > hello.p.c

(b) gcc -S hello.p.c -o hello.p.s

(c) as hello.p.s -o hello.o

(d) /usr/bin/collect2 hello.o -o a.out

2

2. Considere a gramática lógica abaixo, que reconhece cadeias de zero ou mais ocorrências dos śımbolos
+ e -:

mp --> [+], mp.

mp --> [-], mp.

mp --> [].

(a) (2 Pontos) Essa gramática não é amb́ıgua. Escreva, usando a notação BNF, uma gramática que
reconheça a mesma linguagem, mas que seja amb́ıgua.

(b) (2 Pontos) Demonstre que a gramática que você criou na questão anterior é, de fato, amb́ıgua.

(c) (6 Pontos) Modifique a gramática lógica mostrada no ińıcio desta questão, adicionando-lhe um
atributo D. Esse atributo deve informar a diferença entre śımbolos + e śımbolos -. Por exemplo:

?- mp(D, [], []).

D = 0.

?- mp(D, [-, +, +], []).

D = 1 ;

false.

?- mp(D, [-, -, +], []).

D = -1 ;

false.

3

3. (10 Pontos) Escreva uma função toDig, de tipo string -> string list, que converta uma string em
uma lista de d́ıgitos. Por exemplo:

- toDig "123";

val it = ["um","dois","tres"] : string list

- toDig "";

val it = [] : string list

- toDig "001001";

val it = ["zero","zero","um","zero","zero","um"] : string list

Essa função deve ser capaz de lidar com qualquer string de entrada. Se ela receber uma string contendo
caracteres que não são números, então ela deve imprimir ??? para cada um desses caracteres. Por
exemplo:

- toDig "A23";

val it = ["???","dois","tres"] : string list

É posśıvel que você queira usar a função ord, de tipo char -> int em sua solução. Essa função
converte um caracter para o seu código ASCII. Por exemplo:

- ord #"0";

val it = 48 : int

- ord #"1";

val it = 49 : int

- ord #"2";

val it = 50 : int

Outra função que você pode achar interessante é explode, de tipo string -> char list, que recebe
uma string e a converte para uma lista de caracteres:

- explode "dcc024";

val it = [#"d",#"c",#"c",#"0",#"2",#"4"] : char list

4

4. O Link de Aninhamento é uma estrutura usada para permitir que uma função aninhada possa fazer
referência a variáveis declaradas no corpo da função aninhadora. Como um exemplo, considere o
programa abaixo, implementado em Gnu C:

int sum(int x, int limit) {

int prod(int begin) {

if (begin >= limit)

return 1;

else

return begin * prod(begin + 1);

}

return prod(x);

}

int main(int argc, char** argv) {

printf("sum(2, 1) = %d\n", sum(2, 1));

}

A função prod precisa utilizar um link de aninhamento para encontrar o valor da variável limit, pois
essa variável não é local a prod.

(a) Em cada uma das situações abaixo, determine como é descoberto o endereço para onde aponta o
link de aninhamento da função g, logo que ela é ativada:

i. (2 Pontos) A função g não está aninhada dentro de alguma outra função.

ii. (2 Pontos) g está aninhada dentro de uma função f , e g é chamada pela primeira vez.

iii. (2 Pontos) A função g está aninhada dentro de uma função f , e g é chamada recursivamente.

(b) (4 Pontos) O link de aninhamento é necessário em linguagens de programação que permitem
a declaração de funções aninhadas. Por outro lado, mesmo linguagens que não possuem esse
recurso, como ANSI C, ainda permitem que variáveis livres existam. Isso ocorre devido às
variáveis globais:

int counter;

void incCounter() {

counter++; // counter eh variavel livre no escopo de incCounter

}

int main() {

counter = 0;

incCounter();

printf("Counter = %d\n", counter);

}

Por que não é necessário um link de aninhamento para encontrar-se o valor de variáveis globais?

5

5. (2.5 pontos cada) Uma linguagem é estaticamente tipada quando o tipo de cada expressão pode ser
resolvido em tempo de compilação. Uma linguagem é dinamicamente tipada quando o tipo da variável
é resolvido em tempo de execução.

(a) Dê um exemplo de uma linguagem estaticamente tipada. Como o compilador consegue descobrir
o tipo das variáveis, no caso desta linguagem?

(b) Dê um exemplo de uma linguagem dinamicamente tipada. Escreva um programa, muito simples,
que evidencie o caráter dinâmico desta linguagem.

(c) Cite uma vantagem da tipagem estática sobre a tipagem dinâmica.

(d) Agora, cite uma vantagem da tipagem dinâmica sobre a tipagem estática.

6

