
Primeira Prova de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Extra

Questão Extra (0.5 Pontos): em que ano foi decretada a abolição da escravidão no Brasil?

1

1. Esta questão refere-se ao programa abaixo, implementado em uma linguagem de programação hi-
potética, cuja sintaxe é baseada em Python:

def f(x) = x + 2

def h(g) = g(false)

h(f)

Explique como seria o sistema de tipagem da linguagem hipotética considerando cada um dos casos
de tentativa de execução do programa acima. Especificamente, identifique se o sistema de tipagem é
estático ou dinâmico e se há presença de algum dentre os seguintes tipos de polimorfismo: coerção,
sobrecarga, paramétrico e/ou subtipagem. Justifique suas respostas.

(a) (2 Pontos) O programa não compila com o erro:

$> Linha 2. Tipo esperado: ’int’. Tipo encontrado: ’bool’

(b) (3 Pontos) O programa compila, mas durante a execução ele termina de modo anormal, com a
mensagem:

$> Atribuiç~ao inválida. Tipo esperado: ’int * int’. Tipo encontrado: ’bool * int’

(c) (2 Pontos) O programa original compila, e retorna o valor 2. Porém, o programa abaixo não
compila:

def f(x) = x + 2

def h(g) = g(f)

h(f)

(d) (3 Pontos) O programa original compila e retorna o valor 2. O programa abaixo também compila:

def f(x) = x + 2

def h(g) = g(f)

h(f)

Contudo, o programa acima termina de forma anômala, com a mensagem:

$> Operador +: int*int -> int n~ao definido para type<fun>.

2

2. Esta questão refere-se a um experimento reportado no artigo “Towards a Green Ranking for Pro-
gramming Languages”, de autoria de Couto et al., publicado no Simpósio Brasileiro de Linguagens de
Programação de 2017. O principal resultado do artigo foi a tabela abaixo, que normaliza diferentes
linguagens de programação com relação ao tempo que programas escritos nelas gastam para terminar,
e a quantidade de energia do processador que eles consomem:

(a) (2 Pontos) Duas das linguagens acima são consideradas funcionais. Quais?

(b) (2 Pontos) As linguagens C, Ocaml, fortran e Go são compiladas para código de máquina. Cite
duas razões que expliquem o fato de C ser muito mais rápida do que as outras três.

(c) (2 Pontos) Sendo Java uma linguagem virtualizada, era de se esperar que programas escritos em
Java fossem mais lentos do que programas escritos em Fortran. Porém, isso não ocorre. Cite
duas razões que permitam a uma linguagem virtualizada ser mais eficiente que uma linguagem
compilada.

(d) (2 Pontos) Racket, Jruby, Perl e Lua foram as linguagens mais lentas (posto que seus programas
demoraram mais para terminar). Qual a caracteŕıstica comum dessas linguagens que as tornam
mais lentas?

(e) (2 Pontos) A razão (energia/tempo) não é constante entre as linguagens. Para C, essa razão é 1.00.
Para Lua, ela é 0.51. Para Java, ela é 1.02. Isso leva a crer que Lua gasta menos energia por tempo
de computação, e Java gasta mais. Cite duas razões que poderiam levar a este comportamento.

3

3. A gramática da linguagem C não é livre de contexto. Por exemplo, declarações determinam decisões
de parsing. Para ilustrar essa caracteŕıstica da linguagem C, considere o programa abaixo:

int foo() {
 a(b);
}

typedef int a;
int foo() {
 a(b);
}

void a(int b) {}
int b;
int foo() {
 a(b);
}

declaração: 'a' é um tipo

chamada de função: 'a' é uma função

Neste exemplo, a(b) pode ser tanto uma declaração de variável quanto uma chamada de função. O que
determina qual regra de produção deve ser usada é a declaração de a.

(a) Abaixo são dados três outros tipos de programas amb́ıguos. Para cada programa, explique as
duas naturezas sintáticas que o nome a pode assumir. Para cada resposta, escreva um pequeno
código que, quando inserido antes da função main, permite que o programa compile. Um exemplo
aparece logo acima.

• (2 Pontos)

int main() {

a * b;

}

• (2 Pontos)

int main() {

(a)-b;

}

• (2 Pontos)

int main() {

(a)*b;

}

(b) (4 Pontos) Mesmo com esse tipo de ambiguidade, o parser de gcc ou de clang consegue analisar
programas escritos em C ao custo de somente uma passada sobre o texto desses programas. O
natural seria que fossem feitas duas passadas: a primeira coleta todas as declarações, e a segunda
resolve as ambiguidades a partir daquela informação coletada anteriormente. Como é posśıvel
fazer parsing de C via uma passada somente?

4

4. Nesta questão você deverá implementar uma função, em ML, para determinar quando duas listas são
paĺındromos.

(a) (2 Pontos) Comece implementando uma função rev, cujo tipo é: ’a list -> ’a list. rev
recebe uma lista, e produz o seu inverso:

- rev [1, 2, 3];

val it = [3,2,1] : int list

- rev [1.0, 2.0, 3.0];

val it = [3.0,2.0,1.0] : real list

- rev [];

(b) (1 Ponto) Qual a complexidade assimptótica da função rev criada na questão anterior?

(c) (3 Pontos) Escreva uma função zip, cujo tipo é ’a list * ’b list -> (’a * ’b) list. Essa
função combina duas listas em uma lista de pares:

- zip ([1, 2, 3], [true, false]);

val it = [(1,true),(2,false)] : (int * bool) list

- zip (["oi", "mundo"], [3.14, 15.92, 65.359]);

val it = [("oi",3.14),("mundo",15.92)] : (string * real) list

(d) (4 Pontos) Escreva a função paĺındromo, cujo tipo é: ’’a list -> bool. Essa função recebe
uma lista L, e retorna true se L for um paĺındromo. Por exemplo:

- palin [1, 2, 1];

val it = true : bool

- palin [true, false, false, true];

val it = true : bool

- palin [true, false, false];

val it = false : bool

- palin [];

val it = true : bool

- palin [1];

val it = true : bool

- palin [1, 2];

val it = false : bool

Observações:

• você não pode simplesmente comparar a lista com seu inverso. A seguinte solução não é
válida:

fun palin L = L = (rev L)

• Sua solução precisa, necessariamente, usar as seguintes funções: rev, zip, map e foldr.

5

