Primeira Prova de Linguagens de Programacao
- DCC024B -
Ciéncia da Computacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:
e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.

Quando escrever cddigo, a sintaxe correta é importante.

e Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor. Sao perguntas: “Posso fazer uma pergunta?”’ou “Quanto
tempo falta?”

e A prova termina uma hora e quarenta minutos apds seu inicio.

e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e A prova nao é dificil, ela é divertida, entdo aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Questao 4 | Extra

Questao Extra (0.5 Pontos): cite uma capital de algum pais soberano (com assento na Assembléia das
Nagoes Unidas) cujo nome comece pela letra 'F’, em Portugués ou em Inglés.

1. (1 Ponto cada item) A figura abaixo mostra a classificagdo, por popularidade, das linguagens que
aparecem no site de perguntas e respostas StackOverflow. Nesta questao vocé deverd escolher dez
linguagens, e distribui-las entre cada um dos dez itens abaixo. A linguagem atribuida a um certo item
devera apresentar a funcionalidade ou caracteristica descrita naquele item. Importante: vocé nao pode
repetir uma linguagem em itens diferentes. Caso haja repeticéo, os itens em que a linguagem repetida
aparece nao serao considerados para fins de pontuagao desta questao.

JavaScript 69.8% PHP 30.7%
HTML 68.5% C++ 254%
CSS 65.1% C 23.0%
SQL 57.0% TypeScript 17.4%
Java 453% Ruby 10.1%
Bash/Shell 39.8% Swift 8.1%
Python 38.8% Assembly 7.4%
C# 344% Go 7.1%
(a) Tipagem dinamica: (b) Tipagem estatica:
(c) Tipagem fraca: (d) Tipagem forte:
(e) Execucdo via compilagdo: (f) Execugdo via maquina virtual:
(g) Escopo dindmico: (h) Escopo estatico:
(i) Suporte a closures: (j) Turing incompleta:

2. A figura contém trés exemplos de macros implementadas em C. Cada macro ilustra uma idéia diferente
de alguma linguagem de programacao. Em cada caso, indique que idéia ou caracteristica é essa, que a
macro emula em C, e cite uma linguagem de programacao que a contém.

Importante: as respostas dos itens (a), (c) e (e) devem usar no méximo 25 caracteres.

#define SWAP(T, A, B) \ i #define ADD A(x) x+a ! #define TWICE(F,X) F(F(X))
{T _aux = A; \ : :
A = B; \ i void add 1l(int *x) { ‘ int sqgr(int x) {
B = _aux; } é const int a = 1; é return x*x;
*x = ADD A(*X); Py
void use SWAP() {) :
int x =1, y = 2; é é int inc(int x) {
double a = 3.1, b = 2.7; ! void add 2(int *x) { : return x+1;
SWAP(int, X, y); const int a = 2; Py
SWAP (double, a, b); ; *x = ADD A(*X); ;
} . ¢ int use TWICE(int p) {
: é int x = TWICE(inc, p);
void use ADD A(int x) { : int y = TWICE(sqr, p);
add_1(&x); é return x + y;
add_2(&x); P}
} :
(a - 1 Ponto) Caracteristica: i (c-1Ponto) Caracteristica: ;| (e- 1 Ponto) Caracteristica:
(b - 1 Ponto) Linguagem: (d - 1 Ponto) Linguagem: i (f- 1 Ponto) Linguagem:

(g - 4 Pontos) Caso todas as fungdes na linguagem de programacdo C fossem macros, como seria
possivel simplificar os registros de ativagdo dessa linguagem?

3. Nesta questao vocé deverd implementar um algoritmo de ordenacao em SML de duas formas diferentes,
para tanto, usando uma funcao ins.

(a) (4 Pontos) Implemente uma funcdo ins, cujo tipo deve ser int * int list -> int list. Essa

fungéo recebe um elemento e uma lista (supostamente ordenada), e insere o elemento na lista,
produzindo uma nova lista, também ordenada. Exemplos:

- ins(3, [1, 2, 41);

val it = [1,2,3,4] : int list

- ins(3, [1, 2, 3, 41);

val it = [1,2,3,3,4] : int list
- ins(0, [1, 2, 3, 41);

val it = [0,1,2,3,4] : int list
- ins(5, [1, 2, 3, 41);

val it = [1,2,3,4,5] : int list

Importante: sua resposta deve conter uma ou duas linhas.

(3 Pontos) Implemente uma funcdo recursiva inSortR, de tipo int list -> int list, que
utiliza a fung@o ins, escrita na questao anterior, para order uma lista de nimeros inteiros. Im-
portante: sua funcao nao pode utilizar foldr ou foldl. Caso nao tenha feito a questao anterior,
assuma a existéncia da fungao ins. Exemplos:

- inSortR [3, 4, 2, 6];

val it = [2,3,4,6] : int list
— inSortR nil;

val it = nil : int list

(3 Pontos) Implemente uma fungédo inSortF, de tipo int list -> int list, que utiliza foldr
ou foldl, mais a fungao ins do item (a) desta questao, para ordenar uma lista de ntiimeros inteiros.
Importante: sua funcao nao deve ser recursiva —ela deve simplesmente invocar a funcao foldr
ou foldl. Para ajudar-lhes com esse exercicio, o inicio da resposta segue abaixo. Note que usamos
foldl, mas foldr funcionaria também:

fun inSortF L = £0ldl ...t e e e e e et e e e

(d) Esta questao versa sobre varidveis livres no contexto do célculo lambda. Para a solugdo da questao,
considere o tipo abstrato expr abaixo, implementado em SML, que representa expressoes lambda:

datatype expr = VAR of string | LAMBDA of string * expr | APP of expr * expr

i.

ii.

iii.

iv.

(2 Pontos) Quais sdo as varidveis livres na expressao \x.y(A\y.y)zz?

(2 Pontos) Qual a forma normal da expressao (Ax.\y.zy)y?

(2 Pontos) Ré-escreva o termo:
val x = APP ((LAMBDA ("x", VAR "x")), LAMBDA ("y", APP (VAR "y", VAR "y")))

usando a sintaxe do calculo lambda, i.e., Aa.b...

(4 Pontos) Escreva uma funcdo freevar, que produz uma lista com as varidveis livres em
uma expressao lambda. O tipo dessa funcao deve ser expr -> string list. Por exemplo:

- freevar (LAMBDA ("x", APP(VAR "x", VAR "x")));
val it = [] : string list
- freevar (LAMBDA ("x", APP(VAR "w", VAR "x")));
val it = ["w"] : string list
A fim de lhe ajudar a resolver esta questao, disponibilizamos uma fungao diff, de tipo ’’a
-> ’’a list -> ’’a list, que remove um elemento de uma lista. A implementacdo de
diff segue abaixo:
fun diff _ nil = nil
| diff s (h::t) = if s = h then diff s t else h :: diff s t

