
Primeira Prova de Linguagens de Programação
- DCC024 -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor. São perguntas: “Posso fazer uma pergunta?”ou “Quanto
tempo falta?”

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Extra

Questão Extra (0.5 Pontos): “Na Cacuânia se deve ser cacuano”. Onde ficava a Cacuânia? Pede-se o
nome atual do páıs onde ficava a Cacuânia, ou o nome atual de um páıs fronteiriço dessa região.

1

1. Existem vários paradigmas de programação. Diferentes autores inclusive defendem listas diferentes.
Contudo, a maior parte dos teóricos da área de linguagem de programação entende que existe um
paradigma imperativo e um paradigma funcional.

(a) (1 Ponto) Qual o modelo computacional que fundamenta o paradigma imperativo? Um modelo
computacional é uma abstração que determina quais algoritmos podem ser escritos naquele pa-
radigma, como esses algoritmos poderiam ser escritos e qual a complexidade assintótica desses
algoritmos. A t́ıtulo de exemplo, diferentes modelos computacionais já foram usados para mostrar
que o “Problema da Parada”não possui solução computacional.

(b) (1 Ponto) Qual o modelo computacional que fundamenta o paradigma de programação funcional?

(c) (2 Pontos) Por que o paradigma imperativo possui esse nome?

(d) (2 Pontos) Cite uma caracteŕıstica importante do paradigma funcional que o distingue do para-
digma imperativo.

(e) (4 Pontos) O paradigma de programação é uma caracteŕıstica da linguagem de programação ou
dos programas que são escritos naquela linguagem? Defenda seu ponto de vista.

2

2. Uma linguagem de programação é dita fortemente tipada caso programas escritos nessa linguagem não
fiquem em estado indefinido. Note que esse conceito, de tipagem fraca ou forte, não é binário: uma
linguagem pode ser mais ou menos fortemente tipada que outra: a linguagem mais fortemente tipada
terá menos situações que geram comportamento indefinido.

(a) (1 Pontos) Uma forma de garantir a ausência de comportamento indefinido é via verificações
em tempo de execução. Essas verificações são testes condicionais impĺıcitos. O programa abaixo
mostra um teste desse tipo, que é inserido em SML/NJ:

fun first L = hd L fun first L =
 if null L
 then raise Empty
 else hd L

- first ["oi"];
val it = "oi" : string

- first [];

O que o programador escreveu: O que o compilador produziu: Exemplos de execução:

O código mais a direita é um exemplo de programa que usa a função first. Escreva um programa
diferente que usa first que poderia chegar a um estado indefinido caso a verificação impĺıcita no
código produzido pelo compilador não existisse.

(b) (3 Pontos) O compilador java (javac) vai inserir um teste impĺıcito no programa abaixo, a fim
de evitar que o programa chegue a um estado indefinido. O que verifica esse teste?

void testImplicitIsNull(Element e) {
 System.out.println(e.toString());
}

O que o programador escreveu:

(c) O compilador java (javac) vai inserir três testes impĺıcitos no programa abaixo, a fim de evitar
que o programa chegue a um estado indefinido. O que verifica cada um desses testes?

int boundsCheck(int[] array, int index) {
 return array[index];
}

O que o programador escreveu:

i. (2 Pontos) Teste 1:

ii. (2 Pontos) Teste 2:

iii. (2 Pontos) Teste 3:

3

3. O objetivo desta questão é implementar uma busca em lista que retorna a primeira posição da lista
em que certa condição ocorra. Para tanto, iremos implementar a função em quatro partes.

(a) (3 Pontos) Escreva uma função index, de tipo int -> ’a list -> (int * ’a) list, tal que
index n L cria uma lista L’ de tuplas indexadas a partir de n. Por exemplo:

- index 2 ["a", "b", "c"];

val it = [(2,"a"),(3,"b"),(4,"c")] : (int * string) list

- index 0 ["a", "b", "c"];

val it = [(0,"a"),(1,"b"),(2,"c")] : (int * string) list

Note que cada elemento de L’ é um par (i, e), sendo i o ı́ndice do elemento e de L.

(b) (2 Pontos) Escreva uma função count, de tipo ’a list -> (int * ’a) list, que transforme
uma lista L em uma lista de tuplas indexadas a partir de zero (fique à vontade para usar a função
index da questão anterior. Caso não a tenha feito, assuma sua existência). Exemplos:

- count [2, 3, 5, 7];

val it = [(0,2),(1,3),(2,5),(3,7)] : (int * int) list

- count [true, false];

val it = [(0,true),(1,false)] : (int * bool) list

- count ["a", "b", "c"];

val it = [(0,"a"),(1,"b"),(2,"c")] : (int * string) list

(c) (3 Pontos) Escreva a função find aux, de tipo (’a -> bool) -> (int * ’a) list -> int, que
receba um predicado (uma função que retorna um boleano) e uma lista indexada (uma lista de
pares (i, e), em que i é o ı́ndice do elemento e), e retorne o ı́ndice i do primeiro elemento e que
torna verdadeiro o predicado. Exemplos:

- find_aux (fn x => x mod 2 <> 0) [(0,2),(1,3),(2,5)];

val it = 1 : int

- find_aux (fn x => x > 4) [(0,2),(1,3),(2,5)];

val it = 2 : int

- find_aux (fn x => x > 6) [(0,2),(1,3),(2,5)];

val it = ~1 : int

(d) (2 Ponto) Escreva uma função find, de tipo (’a -> bool) -> ’a list -> int, tal que find f

L retorne o ı́ndice do primeiro elemento de L que seja verdadeiro para o predicado f. Exemplos:

- find (fn x => size(x) > 2) ["Eu", "amo", "voce"];

val it = 1 : int

find (fn x => x mod 2 = 0) [1, 3, 4, 5];

val it = 2 : int

Dica: use find aux. Você pode assumir que a função existe, caso não a tenha feito anteriormente.

4

4. Essa questão diz respeito ao programa escrito em SML/NJ que aparece na parte esquerda da figura
abaixo.

fun f1 n1 =
 let
 fun f2 n2 =
 let
 fun f3 n3
 = n1+n2+n3
 in
 f3 3
 end
 in
 f2 5
 end

f1 1

f1:

f2:

f3:

(1 Ponto) Nome do ponteiro.
(1 Ponto) Aponta para código ou para dados?

M
em

ór
ia

 a
lo

ca
da

 n
a

pi
lh

a

Memória alocada fora da pilha

f1:

f2:

Momento em que o snapshot da memória foi obtido

/

/

/

(1 Ponto) Nome do ponteiro.
(1 Ponto) Aponta para código ou para dados?

(1 Ponto) Nome do ponteiro.
(1 Ponto) Aponta para código ou para dados?

Dado (D) ou
Código (C)?

(a) (6 Pontos) A figura mostra o registro de ativação das diferentes funções chamadas para calcular
f1 1. A foto da memória (snapshot) foi tirada quando a chamada f3 3 ocorreu. Os registros de
ativação das diferentes funções contém a mesma estrutura: espaços para alocar os dados que cada
função precisa para executar corretamente. Dentre esses dados, SML/NJ aloca ao menos três
ponteiros em cada registro de ativação. Pede-se que você escreva o nome desses três ponteiros,
e indique, para cada ponteiro, se ele aponta para uma área de código (para algum endereço
de instrução de máquina) ou para uma área de dados (uma região que contém os dados que o
programa precisa para funcionar: pilha, heap, etc). Caso você não saiba o nome do ponteiro, não
se preocupe, você pode usar o espaço abaixo para explicar para quê aquele ponteiro serve.

(b) Os registros de ativação são alocados em um espaço de dados que funciona como uma pilha: o
último registro alocado será o primeiro a ser desalocado, tão logo a função que o criou retorne.
Contudo, em SML/NJ alguns dados de registro de ativação não podem ser alocados na pilha: eles
podem ser necessários após a função que os alocou retornar.

i. (2 Pontos) Quais dados de uma função não podem ser alocados na pilha?

ii. (2 Pontos) Escreva um programa (simples) que demonstra que dados podem ser necessários
após a função que os criou retornar.

5

