
Primeira Prova de Linguagens de Programação
- DCC024B -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Extra

Questão Extra (0.5 Pontos): como construir quatro triângulos equiláteros com seis palitos de fósforo
indeformáveis? Resposta em uma palavra:

1

1. A “cardinalidade” de um tipo é o número de instâncias daquele tipo. Em cada questão abaixo, informe
a cardinalidade do tipo T. Você pode usar a cardinalidade dos tipos constituintes em sua resposta (a
cardinalidade do tipo int, do tipo bool, etc).

(a) (1.25 Pontos) Em SML/NJ: datatype T = I of int | R of real

(b) (1.25 Pontos) Em SML/NJ: type T = int * real

(c) (1.25 Pontos) Em SML/NJ: type T = bool list

(d) (1.25 Pontos) Em SML/NJ: datatype ’a T = NONE | SOME of ’a

(e) (1.25 Pontos) Em SML/NJ: datatype T = Sat | Sun

(f) (1.25 Pontos) Em C: typedef struct { int i; char c; } T;

(g) (1.25 Pontos) Em C: typedef union { int i; char c; } T;

(h) (1.25 Pontos) Em C: enum T { LOW, MEDIUM, HIGH };

2

2. (0.5 Pontos cada) Registros de ativação são regiões de memória que guardam as informações necessárias
à ativação de funções. Registros de ativação incluem diferentes tipos de dados, dependendo de como
a linguagem é implementada. Exemplos de dados armazenados em registros de ativação incluem:
endereço de retorno da função, valor dos parâmetros, valor de retorno, valor das variáveis locais,
ponteiro para o registro de ativação da função anteriormente ativa (Prev-Record), ponteiro para o
registro de ativação da função aninhadora (Nesting-Link), ponteiro para a tabela de variáveis livres na
função (Closure-Table). Em cada figura abaixo, diga quais dessas informações devem estar presentes
no registro de ativação de cada linguagem de programação.

FUNCTION ADDITION(X, Y)
REAL X, Y, ADDITION
ADDITION = X + Y
RETURN
END

A linguagem Fortran 66, que somente possuia
alocação estática de memória

Valor dos parâmetros e variáveis locais

Endereço de retorno

Prev-Record

Nesting-Link

Closure-Table

int main(int argc, char** argv) {
 int x = argc - 1;
 printf(“Number of args = %d\n”, x);
 return 0;
}

A linguagem ANSI C padrão, que não permite
funções aninhadas.

Valor dos parâmetros e variáveis locais

Endereço de retorno

Prev-Record

Nesting-Link

Closure-Table

int outerFunction(int a) {
 int innerFunction(int b) {
 return b * 2;
 }
 return innerFunction(a);
}

A linguagem C compilada pelo compilador
gcc, que suporta funções aninhadas:

Valor dos parâmetros e variáveis locais

Endereço de retorno

Prev-Record

Nesting-Link

Closure-Table

fun funToAddX x =
 let
 fun addX y = y + x
 in
 addX
 end

A linguagem SML/NJ que vimos em sala de
aula, que permite retornar funções aninhadas.

Valor dos parâmetros e variáveis locais

Endereço de retorno

Prev-Record

Nesting-Link

Closure-Table

Em cada caso acima, escreva no retângulo correspondente a uma informação a letra S, caso a informação
esteja presente no registro de ativação, ou a letra N, caso aquela informação não esteja presente.

3

3. O cálculo da mediana é uma maneira de encontrar um valor central em um conjunto de dados. Existe
um algoritmo linear para encontrar a mediana de uma lista de números: (1) Escolha um elemento
pivot. (2) Particione a lista em dois subconjuntos: um contendo elementos menores que o pivot e outro
contendo elementos maiores. (3) Se o ı́ndice do pivot for a mediana, retorne o valor do pivot. (4)
Caso contrário, recorra no subconjunto apropriado com base na relação entre o ı́ndice da mediana e o
ı́ndice do pivot. Abaixo temos uma implementação deste algoritmo em Python. Nesta questão, você
deve traduzir o algoritmo em Python para um conjunto de três funções equivalentes (split, select e
median) em SML/NJ.

def split(lst, pivot):
 small = [x for x in lst if x < pivot]
 large = [x for x in lst if x > pivot]
 return small, large

def select(k, lst):
 if len(lst) == 1:
 return lst[0]
 pivot = lst[0]
 small, large = split(lst[1:], pivot)
 s_len = len(small)
 if k == s_len:
 return pivot
 elif k < s_len:
 return select(k, small)
 else:
 return select(k - s_len - 1, large)

def median(lst):
 n = len(lst)
 if n % 2 == 1:
 return select(n // 2, lst)
 else:
 left = select(n // 2 - 1, lst)
 right = select(n // 2, lst)
 return (left + right) / 2

Example (não precisa traduzir esta parte):
>>> lst = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
>>> median(lst) == 5
True

Código escrito em Python que encontra a mediana
de uma lista de N elementos em O(N):

Código equivalente em SML/NJ

3 Pontos

3 Pontos

4 Pontos

Python:
len(L)
a // b
a % b

SML/NJ:
length L
a div b
a mod bC

he
at

 S
he

et

4

