
Primeira Prova de Linguagens de Programação
- DCC024 -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Serão avaliadas somente as seis melhores respostas. Então sinta-se livre para abandonar alguma questão
devido ao tempo.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7

1

1. (10 Pontos) Considere a implementação SML do algoritmo de ordenação quicksort abaixo:

fun leq a b = a <= b

fun grt a b = a > b

fun filter _ nil = nil

| filter f (h::t) = if f h then h :: filter f t else filter f t

fun qsort nil = nil

| qsort (h::t) = (qsort (filter (grt h) t)) @ [h] @ (qsort (filter (leq h) t))

O método de ordenação quicksort baseia-se em uma idéia relativamente simples: dada uma lista l com
pelo menos um elemento h, separamos l em duas metades, l1 e l2, de forma que todos os elementos
de l1 são menores que h, e todos os elementos de l2 são maiores. Então, ordenamos cada uma destas
sublistas, produzindo l′1 e l′2. O resultado final é a concatenação de l′1 com a lista formada somente por
h, com a lista l′2. Simples, não? E é posśıvel ver este padrão claramente no programa acima. Por isto,
dizemos que este programa é de alto ńıvel. Considere agora a implementação da mesma função em C:

void quickSort(int a[], int l, int r) {

int j;

if(l < r) {

j = partition(a, l, r);

quickSort(a, l, j-1);

quickSort(a, j+1, r);

}

}

int partition(int a[], int l, int r) {

int pivot, i, j, t;

pivot = a[l]; i = l; j = r+1;

while(1) {

do ++i; while(a[i] <= pivot && i <= r);

do --j; while(a[j] > pivot);

if(i >= j) break;

t = a[i]; a[i] = a[j]; a[j] = t;

}

t = a[l]; a[l] = a[j]; a[j] = t;

return j;

}

A função em C faz a mesma coisa: usa o algoritmo de ordenação quicksort para ordenar um arranjo
de inteiros. Muitas pessoas vão achar a função escrita em C mais complicada que a outra, feita em
SML. Por outro lado, ela é inegavelmente mais eficiente em termos de tempo e espaço: entre 50 e 100
vezes! Explique duas razões desta maior eficiência da função escrita em C.

2

2. Dizemos que uma linguagem é segura quando esta linguagem não permite que operações sejam aplicadas
a argumentos que não possuam os tipos previstos por estas operações. C e C++ são linguagens
inseguras, pois muitas vezes valores armazenados em memória são utilizados sem qualquer fiscalização
de seus tipos.

(a) (5 Pontos) Escreva um programa em C ou C++ que evidencie o caráter inseguro de uma destas
linguagens.

(b) (5 Pontos) Existem linguagens mais antigas que C ou C++ que são consideradas seguras, logo, a
possibilidade de uso inseguro de tipos não é devido à ignorância sobre os perigos desta abordagem.
ML, por exemplo, já havia sido definida dez anos antes de C++, porém enquanto ML é uma
linguagem considerada segura, C++ não é. Cite um fator que motivou o desenho inseguro de
C++.

3

3. (10 Pontos) Considere o tipo algébrigo bx, cuja implementação é dada abaixo:

datatype bx = TRUE | FALSE | AND of bx * bx | OR of bx * bx | NOT of bx

Este tipo algébrico representa expressões booleanas, usando a semântica tradicional dos operadores
lógicos AND, OR e NOT. Escreva uma função interp em SML, de tipo bx -> bool, que receba um
elemento do tipo bx e produza o valor booleano correspondente. Por exemplo:

- interp TRUE;

val it = true : bool

- interp FALSE;

val it = false : bool

- interp (NOT TRUE);

val it = false : bool

- interp (AND (TRUE, FALSE));

val it = false : bool

- interp (OR (FALSE, FALSE));

val it = false : bool

- interp (AND (OR (FALSE, FALSE), TRUE));

val it = false : bool

- interp (OR (TRUE, AND (TRUE, FALSE)));

val it = true : bool

4

4. (2.5 pontos cada) Uma expressão λ que não pode mais ser reduzida é dita estar em forma normal.
Abaixo temos quatro expressões λ, nenhuma das quais está em forma normal. Reduza estas expressões,
até que você encontre uma forma normal para elas, ou explique porque tal não pode ser feito, quando
for o caso, isto é, a forma normal não existe. Atente para o problema da captura de variáveis livres.
Você irá precisar das seguintes definições para a penúltima questão:

• T = λx.λy.x

• F = λx.λy.y

• NOT = λb.bFT

(a) (λx.(λy.(x(λx.xy))))y

(b) (λm.λn.λx.λy.mx(nxy))(λa.λb.b)(λc.λd.c(cd))

(c) (λx.x F NOT F)(λa.λb.a(a(ab)))

(d) (λx.xx)(λy.yy)

5

5. Considere as duas gramáticas abaixo, e diga se alguma delas é amb́ıgua. O śımbolo E significa a
palavra vazia. Estas gramáticas reconhecem a mesma linguagem, formada por strings enclausuradas
por parênteses e colchetes balanceados. Se a gramática for amb́ıgua, escreva as suas duas árvores de
derivação. Do contrário explique porque você acha que a gramática não apresenta ambiguidades.

(a) (5 Pontos) Primeira gramática:

<string> ::= <string> <string>

| (<string>)

| [<string>]

| E

(b) (5 Pontos) Segunda gramática:

<string> ::= (<string>) <string>

| [<string>] <string>

| E

6

6. (10 Pontos) Nós vimos em sala de aula que a maior parte das linguagens modernas usam registros
de ativação para armazenar dados tais como valores de parâmetros, endereço de retorno, valores das
variáveis locais, etc. Além disto, linguagens que permitem que uma função seja declarada dentro de
outra, como SML, também possuem um link de aninhamento em seu registro de ativação. O link de
aninhamento em um registro de ativação de uma função f aponta para o registro de ativação de uma
função g, que é a função dentro da qual f foi definida. A função do link de aninhamento é permitir que
variáveis declaradas na função “de fora”sejam usadas na função “de dentro”. Por exemplo, considere
a função foo abaixo, implementada em SML:

fun foo n =

let

fun bar 0 = []

| bar m = n :: bar (m - 1)

in

bar n

end

O link de aninhamento de bar irá sempre apontar para a última ativação de foo. Para que bar possa
encontrar o valor da variável n, esta função percorre seu link de aninhamento. Linguagens que possuem
o conceito de bloco de código também usam uma pilha em memória para armazenar as variáveis locais
criadas dentro de cada bloco. Considere, por exemplo, o programa abaixo, escrito em C, que ordena
um arranjo de inteiros:

1 int sort(int a[], int size) {

2 int i = 0;

3 while (i < size - 1) {

4 int j = i + 1;

5 while (j < size) {

6 if (a[i] > a[j]) {

7 SWAP(a, i, j);

8 }

9 j++;

10 }

11 i++;

12 }

13 }

Note que o bloco que vai da linha 5 à linha 10 usa as variáveis i e j, que foram declaradas fora deste
bloco. Por outro lado, links de aninhamento não são necessários para implementar blocos de código.
Explique o porquê.

7

7. (10 pontos) Muitas linguagens de programação são compiladas diretamente para cóigo de máquina.
Outras são interpretadas. E outras executam sobre uma máquina virtual. É posśıvel um programa exe-
cutando sobre uma máquina virtual ser mais eficiente que um programa que foi compilado diretamente
para código de máquina? Justifique a sua resposta.

8

