Primeira Prova de Linguagens de Programacao
- DCC024 -
Ciéncia da Computacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:
e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.

Quando escrever cédigo, a sintaxe correta é importante.

Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.
e Seja honesto e lembre-se: vocé deu sua palavra de honra.

Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e Serao avaliadas somente as seis melhores respostas. Entao sinta-se livre para abandonar alguma questao
devido ao tempo.

e A prova nao é dificil, ela é divertida, entao aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questao 1 | Questao 2 | Questao 3 | Questao 4 | Questao 5 | Questao 6 | Questao 7

1. (10 Pontos) Considere a implementagao SML do algoritmo de ordenac@o quicksort abaixo:

1]
o]

i
o

fun leq a b

I
»
v
o

fun grt a b

fun filter nil = nil

| filter £ (h::t) = if £ h then h :: filter f t else filter f t

fun gsort nil = nil
| gsort (h::t) = (gsort (filter (grt h) t)) @ [h] @ (gsort (filter (leq h) t))

O método de ordenagao quicksort baseia-se em uma idéia relativamente simples: dada uma lista [com
pelo menos um elemento h, separamos [em duas metades, [1 e l3, de forma que todos os elementos
de [; sd@o menores que h, e todos os elementos de 5 sao maiores. Entao, ordenamos cada uma destas
sublistas, produzindo 1] e I5. O resultado final é a concatenagéo de [com a lista formada somente por
h, com a lista l}. Simples, ndo? E é possivel ver este padrao claramente no programa acima. Por isto,
dizemos que este programa é de alto nivel. Considere agora a implementagao da mesma funcao em C:

void quickSort(int a[], int 1, int r) {
int j;
if(l<r) {
j = partition(a, 1, r);
quickSort(a, 1, j-1);
quickSort(a, j+1, r);
}
}
int partition(int al], int 1, int r) {
int pivot, i, j, t;
pivot = a[ll; i = 1; j = r+1;
while(1) {
do ++i; while(al[i] <= pivot && i <=r);
do --j; while(al[j]l > pivot);
if(i >= j) break;

t = alil; alil = aljl; aljl = t;
}
t = all]l; alll = aljl; aljl = t;
return j;

}

A fungao em C faz a mesma coisa: usa o algoritmo de ordenagao quicksort para ordenar um arranjo
de inteiros. Muitas pessoas vao achar a funcao escrita em C mais complicada que a outra, feita em
SML. Por outro lado, ela é inegavelmente mais eficiente em termos de tempo e espaco: entre 50 e 100
vezes! Explique duas razoes desta maior eficiéncia da fungao escrita em C.

2. Dizemos que uma linguagem é segura quando esta linguagem nao permite que operacoes sejam aplicadas
a argumentos que nao possuam os tipos previstos por estas operagoes. C e C++ sao linguagens
inseguras, pois muitas vezes valores armazenados em memoria sao utilizados sem qualquer fiscalizagao
de seus tipos.

(a) (5 Pontos) Escreva um programa em C ou C++ que evidencie o cardter inseguro de uma destas
linguagens.

(b) (5 Pontos) Existem linguagens mais antigas que C ou C++ que séo consideradas seguras, logo, a
possibilidade de uso inseguro de tipos nao é devido a ignorancia sobre os perigos desta abordagem.
ML, por exemplo, ja havia sido definida dez anos antes de C++, porém enquanto ML é uma
linguagem considerada segura, C++ nao é. Cite um fator que motivou o desenho inseguro de
C++.

3. (10 Pontos) Considere o tipo algébrigo bx, cuja implementacdo é dada abaixo:
datatype bx = TRUE | FALSE | AND of bx * bx | OR of bx * bx | NOT of bx

Este tipo algébrico representa expressoes booleanas, usando a semantica tradicional dos operadores
l6gicos AND, OR e NOT. Escreva uma fungdo interp em SML, de tipo bx -> bool, que receba um
elemento do tipo bx e produza o valor booleano correspondente. Por exemplo:

- interp TRUE;
val it = true : bool

- interp FALSE;
val it = false : bool

- interp (NOT TRUE);
val it = false : bool

- interp (AND (TRUE, FALSE));
val it = false : bool

- interp (OR (FALSE, FALSE));
val it = false : bool

- interp (AND (OR (FALSE, FALSE), TRUE));
val it = false : bool

- interp (OR (TRUE, AND (TRUE, FALSE)));
val it = true : bool

4. (2.5 pontos cada) Uma expressdo A\ que ndo pode mais ser reduzida é dita estar em forma normal.
Abaixo temos quatro expressées A, nenhuma das quais estd em forma normal. Reduza estas expressoes,
até que vocé encontre uma forma normal para elas, ou explique porque tal nao pode ser feito, quando
for o caso, isto é, a forma normal nao existe. Atente para o problema da captura de varidveis livres.

Vocé ira precisar das seguintes defini¢goes para a peniltima questao:

o T =)\x.\y.x
o F=J)x\y.y
o NOT = Nb.bFT

(@) (Az.(Ay-(z(Az.zy))))y

(b) (Am.An Az Ay.ma(nxy))(Aa.Ab.b)(Ac.Ad.c(cd))

(¢) (Ar.x F NOT F)(Aa.Mb.a(a(ab)))

(d) (Az.2xx)(Ay.yy)

5. Considere as duas gramaéticas abaixo, e diga se alguma delas é ambigua. O simbolo E significa a
palavra vazia. Estas gramaéticas reconhecem a mesma linguagem, formada por strings enclausuradas
por parénteses e colchetes balanceados. Se a gramética for ambigua, escreva as suas duas arvores de

derivagao. Do contrario explique porque vocé acha que a gramatica nao apresenta ambiguidades.
(a) (5 Pontos) Primeira gramética:

<string> ::= <string> <string>
| (<string>)
| [<string>]
| E

(b) (5 Pontos) Segunda gramética:

<string> ::= (<string>) <string>
| [<string>] <string>
| E

6. (10 Pontos) Nés vimos em sala de aula que a maior parte das linguagens modernas usam registros
de ativacao para armazenar dados tais como valores de parametros, endereco de retorno, valores das
varidveis locais, etc. Além disto, linguagens que permitem que uma fungéo seja declarada dentro de
outra, como SML, também possuem um link de aninhamento em seu registro de ativagao. O link de
aninhamento em um registro de ativacao de uma funcao f aponta para o registro de ativagao de uma
funcédo g, que é a funcao dentro da qual f foi definida. A fung¢a@o do link de aninhamento é permitir que
variaveis declaradas na funcao “de fora”’sejam usadas na funcao “de dentro”. Por exemplo, considere
a funcao foo abaixo, implementada em SML:

fun foo n =

let
fun bar 0 = []
| bar m =n :: bar (m - 1)
in
bar n
end

O link de aninhamento de bar ird sempre apontar para a ultima ativagao de foo. Para que bar possa
encontrar o valor da varidvel n, esta funcao percorre seu link de aninhamento. Linguagens que possuem
o conceito de bloco de codigo também usam uma pilha em memoéria para armazenar as varidveis locais
criadas dentro de cada bloco. Considere, por exemplo, o programa abaixo, escrito em C, que ordena
um arranjo de inteiros:

1 int sort(int a[], int size) {
2 int i = 0;

3 while (i < size - 1) {

4 int j = i + 1;

5 while (j < size) {

6 if (ali]l > alj]) {

7 SWAP(a, i, j);

8

9

}
Jjt++;
10 }
11 i++;
12 }
13 }

Note que o bloco que vai da linha 5 a linha 10 usa as varidveis i e j, que foram declaradas fora deste
bloco. Por outro lado, links de aninhamento nao sao necessdrios para implementar blocos de codigo.
Explique o porqué.

7. (10 pontos) Muitas linguagens de programagao sido compiladas diretamente para céigo de maquina.
Outras sdo interpretadas. E outras executam sobre uma méquina virtual. E possivel um programa exe-
cutando sobre uma maquina virtual ser mais eficiente que um programa que foi compilado diretamente
para cédigo de maquina? Justifique a sua resposta.

