Primeira Prova de Linguagens de Programacao
- DCC024 -
Sistemas de Informacao

Nome:
“Eu dou minha palavra de honra que nao trapacearei neste exame.”

Numero de matricula:

As regras do jogo:

e A prova é sem consulta.

e Quando terminar, nao entregue nada além do caderno de provas para o instrutor.
e Quando escrever cédigo, a sintaxe correta é importante.

e Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier a mesa do instrutor.

e A prova termina uma hora e quarenta minutos apds seu inicio.
Alguns conselhos:

e Escreva sempre algo nas questoes, a fim de ganhar algum crédito parcial.

e Se nao entender a questao, e ja tiver gasto sua pergunta, escreva a sua interpretacao da questao junto
a resposta.

e Serao avaliadas as seis melhores respostas. Entao sinta-se livre para abandonar alguma questao devido
ao tempo.

e A prova nao é dificil, ela é divertida, entdo aproveite!

Tabela 1: Pontos acumulados

Questao 1 | Questao 2 | Questdo 3 | Questdo 4 | Questao 5 | Questdo 6 | Questdao 7

1. Esta questao refere-se a gramética abaixo, escrita em Prolog:

expr --> mulexp, [+], expr.

expr —-> mulexp.

mulexp --> rootexp, [*], mulexp.

mulexp --> rootexp.

rootexp -—> [’ (’], expr, [’)’].

rootexp --> number.

number --> digit.

number --> digit, number.

digit --> [0] ; [11 ; [2] ; [31 ; [4] ; [51 ; [6] ; [71 ; [8] ; [9].

A titulo de exemplo, a expressdo 12 x (3 4 56) seria escrita, nesta gramética, assim:
expr([1,2,%,°(°,3,+,5,6,7)°], [1).

(a) (4 pontos) Modifique a gramdtica para que ela passe a tratar de nimeros com sinal. Por exemplo,
a expressao —12x (3+—56) seria escrita assim: expr([-,1,2,*,’(*,3,+,-,5,6,’)’], [1). Nao
é necessario re-escrever toda a gramética. Re-escreva somente as partes que serao modificadas.

(b) (3 pontos) Adicione & gramdtica original (ndo a gramética da ltima questao) um operador bindrio
&, que seja associativo a esquerda, e que tenha precedéncia menor que todos os outros operadores
da gramética. Por exemplo, a expressio 12 x (3&56) seria representada como
expr([1,2,*,°(,3,&,5,6,°)°]1, [1)..

(¢) (3 pontos) Adicione & gramdtica original um operador undrio **, que seja associativo & direita, e
que tenha a precedéncia maior que todos os outros operadores, menos os parénteses. Por exemplo,
a expressdo 12 x 3% + 56 seria representada como expr([1,2,%,’ (’,*x,3,+,5,6,°)°1, [1)..

2. (2 pontos cada) O autor de ML, Robin Milner, ganhou um prémio Turing. Uma de suas maiores
contribuicoes a ciéncia da computagao foi um algoritmo para a inferéncia de tipos. ML é uma linguagem
estaticamente tipada, porém o desenvolvedor em geral nao precisa escrever o tipo durante a declaragao
de expressoes. Os tipos sao inferidos automaticamente pelo programador. Neste exercicio vocé deverd
pensar como um compilador, quando este realiza a inferéncia de tipos. Escreva o tipo de cada funcgao
abaixo.

(a) £(x, y) =1

(b) £(x) = x

(c) £(g) = g(L)

(d) foldr (fn(x,y) => x + y)

(e) £(g, x) = glgx))

3. (2.5 pontos cada questdo) Linguagens de programagao utilizam vérios mecanismos para descobrir os
tipos dos valores manipulados nos programas. Abaixo temos trés implementagoes do programa fatorial,
escritas em trés linguagens diferentes. Para cada implementacao, responda as seguintes perguntas:

e Quando o tipo do nome n é conhecido? Durante a compilagao do programa, ou durante a sua
execugao?
e Como a implementagao da linguagem descobre o tipo de n?
(a) O programa abaixo foi escrito em C:

#include <stdio.h>
int fact(int n) {

int £ = 1;
while (--n)
f *= n;
return f;
}

int main(int argc, char** argv) {
printf ("\%d\n", fact(argc));
}

(b) O programa abaixo foi escrito em SML:

fun fact n = if n > 1 then n * fact(n-1) else 1;

(¢) O programa abaixo foi escrito em javaScript:

function fact(n) {
if (n > 1) {
return n * fact(n - 1);
} else {
return 1;
}
}

print(fact("Love is the only reason to live."));
print(fact(10));

(d) O programa acima, em javaScript, produz a seguinte saida:

1
3628800

Com base nesta informacao, javaScript é uma linguagem fortemente ou fracamente tipada?

4. (2.5 pontos cada questao) Esta questao refere-se as seguintes defini¢oes de fungoes A:

e Pair=Xa . Ab. \f . fab

e Head = A\g . g(Aa . \b . a)

e Tail = Ag . g(Aa . Ab . D)

e Curry = Af . Az . Ay . f(Pair z y)

e Uncurry = Af . \p .f(Head p)(Tail p)

Com base nas definigoes acima, mostre todos os passos das redugoes abaixo:

(a) Tail(Pair p q) = ¢

(b) Curry (Uncurry h) = h

(¢) Uncurry (Curry h) (Pair r s) = h(Pair r s)

(d) Como representar listas no célculo lambda, usando as defini¢bes de Pair, Head e Tail? Nesta
questao, apenas apresente sua idéia. Nao é necessario mostrar detalhadas equagoes lambda. Para
ilustrar sua abordagem, descreva como a lista [1,2,3,4] seria representada.

5. Linguagens de programacao provéem aos desenvolvedores diversas abstracoes que tém o propdsito
especifico de permitir reiso de cédigo. As questoes abaixo referem-se a duas destas abstracoes:

(a) Escreva um programa em SML que ilustre como fungoes de alta ordem sdo utilizadas como um
mecanismo de reiso. Explique o que estd sendo reusado neste exemplo.

(b) Escreva um programa em SML que mostre como o polimorfismo paramétrico possibilita o retiso
de cédigo. Assim como na questao anterior, descreva o que esta sendo reusado.

6. A solucao esperada para os trés préximos exercicios deve ter somente uma linha, e deve usar as fungoes
map, foldr e foldl.

(a) (4 pontos) Escreva uma fungao squareList, de tipo int list -> int list que receba uma lista
de inteiros e retorne uma lista dos quadrados destes inteiros. Por exemplo, a chamada squareList
[1, 2, 3, 4] deveria retornar [1, 4, 9, 16].

(b) (3 pontos) Escreva uma fungao sqSum, de tipo int list -> int que receba uma lista de inteiros
e retorne a soma dos quadrados destes inteiros. Por exemplo, a chamada sqSum [1, 2, 3, 4]
deveria retornar 30.

(c) (3 pontos) Escreva uma funcao dupList, de tipo ’a list -> ’a list, cujo resultado seja a lista
de entrada com cada elemento repetido em sequéncia. Por exemplo, a chamada dupList [1, 2
,3] deveria retornar [1, 1, 2, 2, 3, 3]. Se a lista de entrada é nula, o resultado deve ser a
lista nula.

7. As duas questOes a seguir referem-se ao registro de ativacao de fungoes. Registros de ativagao sao
os blocos de dados utilizados para armazenar as informagoes necessarias a execugao das fungoes. Em
geral estes blocos sao criados durante a chamada da fungao, e colocados em uma pilha. Quando a
fungéo termina, seu registro de ativagao é desempilhado. A alocagio, neste caso, tende a ser bastante
eficiente, pois a ultima funcao chamada serd a primeira a terminar.

(a) (2 pontos) Que informagoes sdo normalmente mantidas em registros de ativacdo de fungoes im-
plementadas na linguagem ANSI C?

(b) (3 pontos) Cite uma diferenga entre os registros de ativagdo usados na linguagem ANSI C e em
SML.

(¢) (5 pontos) Considere a fungao foo, abaixo, cujo tipo é int -> int list -> int list.

fun foo x nil = nil

| foo x (h::t) =
let
fun addX y =y + x
in
addX h :: foo x t
end

Esta funcgao recebe um niimero inteiro x e uma lista e soma este niimero a cada elemento da lista,
por exemplo, foo 1 [1,2] = [2,3]. Desenhe os varios registros de ativagao criados devido a
chamada foo [1, 2]. Estes registros devem ser desenhados imediatamente antes que a iltima
invocacao da funcao addX termine. Isto é, desenhe os registros de ativacao no momento em que o
registro criado para a chamada addX 2 estd a ponto de ser desempilhado.

