
Primeira Prova de Linguagens de Programação
- DCC024 -

Sistemas de Informação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Serão avaliadas as seis melhores respostas. Então sinta-se livre para abandonar alguma questão devido
ao tempo.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7

1

1. Esta questão refere-se à gramática abaixo, escrita em Prolog:

expr --> mulexp, [+], expr.

expr --> mulexp.

mulexp --> rootexp, [*], mulexp.

mulexp --> rootexp.

rootexp --> [’(’], expr, [’)’].

rootexp --> number.

number --> digit.

number --> digit, number.

digit --> [0] ; [1] ; [2] ; [3] ; [4] ; [5] ; [6] ; [7] ; [8] ; [9].

A t́ıtulo de exemplo, a expressão 12× (3 + 56) seria escrita, nesta gramática, assim:
expr([1,2,*,’(’,3,+,5,6,’)’], []).

(a) (4 pontos) Modifique a gramática para que ela passe a tratar de números com sinal. Por exemplo,
a expressão −12×(3+−56) seria escrita assim: expr([-,1,2,*,’(’,3,+,-,5,6,’)’], []). Não
é necessário re-escrever toda a gramática. Re-escreva somente as partes que serão modificadas.

(b) (3 pontos) Adicione à gramática original (não à gramática da última questão) um operador binário
&, que seja associativo à esquerda, e que tenha precedência menor que todos os outros operadores
da gramática. Por exemplo, a expressão 12× (3&56) seria representada como
expr([1,2,*,’(’,3,&,5,6,’)’], [])..

(c) (3 pontos) Adicione à gramática original um operador unário **, que seja associativo à direita, e
que tenha a precedência maior que todos os outros operadores, menos os parênteses. Por exemplo,
a expressão 12× 32 + 56 seria representada como expr([1,2,*,’(’,**,3,+,5,6,’)’], [])..

2

2. (2 pontos cada) O autor de ML, Robin Milner, ganhou um prêmio Turing. Uma de suas maiores
contribuições à ciência da computação foi um algoritmo para a inferência de tipos. ML é uma linguagem
estaticamente tipada, porém o desenvolvedor em geral não precisa escrever o tipo durante a declaração
de expressões. Os tipos são inferidos automaticamente pelo programador. Neste exerćıcio você deverá
pensar como um compilador, quando este realiza a inferência de tipos. Escreva o tipo de cada função
abaixo.

(a) f(x, y) = 1

(b) f(x) = x

(c) f(g) = g(1)

(d) foldr (fn(x,y) => x + y)

(e) f(g, x) = g(g(x))

3

3. (2.5 pontos cada questão) Linguagens de programação utilizam vários mecanismos para descobrir os
tipos dos valores manipulados nos programas. Abaixo temos três implementações do programa fatorial,
escritas em três linguagens diferentes. Para cada implementação, responda às seguintes perguntas:

• Quando o tipo do nome n é conhecido? Durante a compilação do programa, ou durante a sua
execução?

• Como a implementação da linguagem descobre o tipo de n?

(a) O programa abaixo foi escrito em C:

#include <stdio.h>

int fact(int n) {

int f = 1;

while (--n)

f *= n;

return f;

}

int main(int argc, char** argv) {

printf("\%d\n", fact(argc));

}

(b) O programa abaixo foi escrito em SML:

fun fact n = if n > 1 then n * fact(n-1) else 1;

(c) O programa abaixo foi escrito em javaScript:

function fact(n) {

if (n > 1) {

return n * fact(n - 1);

} else {

return 1;

}

}

print(fact("Love is the only reason to live."));

print(fact(10));

(d) O programa acima, em javaScript, produz a seguinte sáıda:

1

3628800

Com base nesta informação, javaScript é uma linguagem fortemente ou fracamente tipada?

4

4. (2.5 pontos cada questão) Esta questão refere-se às seguintes definições de funções λ:

• Pair = λa . λb . λf . fab

• Head = λg . g(λa . λb . a)

• Tail = λg . g(λa . λb . b)

• Curry = λf . λx . λy . f(Pair x y)

• Uncurry = λf . λp .f(Head p)(Tail p)

Com base nas definições acima, mostre todos os passos das reduções abaixo:

(a) Tail(Pair p q)⇒ q

(b) Curry (Uncurry h)⇒ h

(c) Uncurry (Curry h) (Pair r s)⇒ h(Pair r s)

(d) Como representar listas no cálculo lambda, usando as definições de Pair, Head e Tail? Nesta
questão, apenas apresente sua idéia. Não é necessário mostrar detalhadas equações lambda. Para
ilustrar sua abordagem, descreva como a lista [1,2,3,4] seria representada.

5

5. Linguagens de programação provêem aos desenvolvedores diversas abstrações que têm o propósito
espećıfico de permitir reúso de código. As questões abaixo referem-se a duas destas abstrações:

(a) Escreva um programa em SML que ilustre como funções de alta ordem são utilizadas como um
mecanismo de reúso. Explique o que está sendo reusado neste exemplo.

(b) Escreva um programa em SML que mostre como o polimorfismo paramétrico possibilita o reúso
de código. Assim como na questão anterior, descreva o que está sendo reusado.

6

6. A solução esperada para os três próximos exerćıcios deve ter somente uma linha, e deve usar as funções
map, foldr e foldl.

(a) (4 pontos) Escreva uma função squareList, de tipo int list -> int list que receba uma lista
de inteiros e retorne uma lista dos quadrados destes inteiros. Por exemplo, a chamada squareList

[1, 2, 3, 4] deveria retornar [1, 4, 9, 16].

(b) (3 pontos) Escreva uma função sqSum, de tipo int list -> int que receba uma lista de inteiros
e retorne a soma dos quadrados destes inteiros. Por exemplo, a chamada sqSum [1, 2, 3, 4]

deveria retornar 30.

(c) (3 pontos) Escreva uma função dupList, de tipo ’a list -> ’a list, cujo resultado seja a lista
de entrada com cada elemento repetido em sequência. Por exemplo, a chamada dupList [1, 2

,3] deveria retornar [1, 1, 2, 2, 3, 3]. Se a lista de entrada é nula, o resultado deve ser a
lista nula.

7

7. As duas questões a seguir referem-se ao registro de ativação de funções. Registros de ativação são
os blocos de dados utilizados para armazenar as informações necessárias à execução das funções. Em
geral estes blocos são criados durante a chamada da função, e colocados em uma pilha. Quando a
função termina, seu registro de ativação é desempilhado. A alocação, neste caso, tende a ser bastante
eficiente, pois a última função chamada será a primeira a terminar.

(a) (2 pontos) Que informações são normalmente mantidas em registros de ativação de funções im-
plementadas na linguagem ANSI C?

(b) (3 pontos) Cite uma diferença entre os registros de ativação usados na linguagem ANSI C e em
SML.

(c) (5 pontos) Considere a função foo, abaixo, cujo tipo é int -> int list -> int list.

fun foo x nil = nil

| foo x (h::t) =

let

fun addX y = y + x

in

addX h :: foo x t

end

Esta função recebe um número inteiro x e uma lista e soma este número a cada elemento da lista,
por exemplo, foo 1 [1,2] = [2,3]. Desenhe os vários registros de ativação criados devido à
chamada foo [1, 2]. Estes registros devem ser desenhados imediatamente antes que a última
invocação da função addX termine. Isto é, desenhe os registros de ativação no momento em que o
registro criado para a chamada addX 2 está a ponto de ser desempilhado.

8

