
Primeira Prova de Linguagens de Programação
- DCC024B -

Ciência da Computação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6

1



1. (10 Pontos) Esta questão concerne a gramática abaixo, que é amb́ıgua:

cmd --> [if], bool_expr, [then], cmd.
cmd --> [if], bool_expr, [then], cmd, [else], cmd.
cmd --> [halt].

(a) Prove que a gramática acima é amb́ıgua.

(b) Como essa ambiguidade compromete a semântica dos programas?

(c) SML possui um construto do tipo if-then-else, porém a gramática de SML não é amb́ıgua. Por
que essa ambiguidade não existe em SML?

2



2. (10 Pontos) Essa questão refere-se ao diagrama abaixo, que mostra o ciclo de vida de um programa
escrito na linguagem C:

Editor de
Texto

Preproces-
sador 1 Compi-

lador 2

Montador3Ligador4Carrega-
dor

Arquivo
fonte

Programa em
execução

A B C

DEF

• (4 pontos) O arquivo fonte é uma sequência de caracteres ASCII que formam um programa correto
na linguagem C. Para cada uma das outras representações intermediárias que o programa assume,
diga se o formato é ASCII ou binário, e a linguagem (C, de montador, de máquina) em que tal
arquivo é escrito.

– 1:
– 2:
– 3:
– 4:

• (2 pontos) Caso mudemos a arquitetura alvo do diagrama acima, por exemplo, de x86 para
PowerPC, quais representações de programa certamente mudariam?

• (2 pontos) A maior parte dos formatos acima seguem gramáticas idênticas, ou muito parecidas.
Existe, contudo, uma das fases do processo de compilação, A, B, C, D, E ou F, que muda a
gramática da representação intermediária consideravelmente. Qual fase é essa?

• (2 pontos) Caso mudássemos a linguagem, de C, para Java, qual seria o formato e linguage de
entrada e o formato e linguagem de sáıda da fase C do diagrama acima?

3



3. Considere a assinatura abaixo, que descreve a interface de um conjunto de inteiros:

signature SET =
sig
type set
val new : set
val add : set -> int -> set
val contains : set -> int -> bool
val remove : set -> int -> set
val union : set -> set -> set
val intersection : set -> set -> set
val complement : set -> set

end ;

Uma posśıvel implementação para essa interface é dada logo abaixo. Nesse caso, estamos usando
funções para representar os conjuntos.

structure FunSet :> SET =
struct
type set = int -> bool
val new = fn x => false
fun add f i = fn x => if x = i then true else f x
fun contains f i = f i
fun remove f i = fn x => if x = i then false else f x
fun union ...
fun intersection ...
fun complement ...

end ;

• (3 pontos) Complete a função union, de tipo set -> set -> set na estrutura FunSet. FunSet.union
f1 f2 retorna um novo conjunto que contém qualquer elemento que esteja em f1 ou em f2.

• (3 pontos) Complete a função intersection, de tipo set -> set -> set na estrutura FunSet.
FunSet.intersection f1 f2 retorna um novo conjunto que contém somente os elementos que
estiverem tanto em f1 quanto em f2.

• (4 pontos) Complete a função complement, de tipo set -> set na estrutura FunSet. FunSet.complement
f retorna um novo conjunto f’ que contenha (dentro do universo dos inteiros de SML) cada ele-
mento que f não contiver, e vice-versa.

4



4. (10 pontos) Podemos representar os valores booleanos no cálculo lambda segundo a seguinte convenção:

• T = λx . λy . x

• F = λx . λy . y

Dessa forma, o valor verdade (T ) é uma função que recebe dois parâmetros 1 x e y, e retorna o primeiro.
Já o valor falso é uma função, que, tal qual T , também recebe dois parâmetros, porém retorna o segundo
deles. Nesta questão, pede-se que seja implementada – em cálculo lambda – a função lógica NAND, tal
que:

• nand T T = F

• nand T F = T

• nand F T = T

• nand F F = T

Não assuma a existência de nenhuma função pronta, mas sinta-se livre para implementar, sempre em
cálculo lambda, quaisquer funções auxiliares que forem necessárias.

1O “recebe dois parâmetros”é, na verdade, um abuso de linguagem que descreve uma função de alta ordem, pois toda função
no cálculo lambda recebe somente um parâmetro.

5



5. (10 pontos) Escreva o mais curto exemplo, em SML/NJ, em que você consiga pensar, que não funciona-
ria corretamente caso SML/NJ não implementasse registros de ativação usando links de aninhamento.
Isto é, os registros de ativação podem ser implementados via uma pilha, como é normalmente feito,
mas não possuem link de aninhamento.

6



6. (10 pontos) Considere o tipo algébrico tree, que está definido abaixo:

datatype ’data tree =
Empty |
Node of ’data tree * ’data * ’data tree

Escreva uma função bPath, de tipo int tree -> int, que retorne a soma do caminho de maior soma
na árvore de entrada. Por exemplo, abaixo temos algumas árvores, com seu caminho mais pesado
marcado, e a soma desse caminho dada.

3

2 5

1 4 1 2

7

5 3

1 4 6 2

3

2

1

2

6

1610

9

Por exemplo:

- val T = Node(Empty, 4, Node(Empty, 3, Empty));
val T = Node (Empty,4,Node (Empty,3,Empty)) : int tree

- bPath T;
val it = 7 : int

7


